• Title/Summary/Keyword: Adjacent ground excavation

Search Result 135, Processing Time 0.033 seconds

Case Study of Structure Damage due to Adjacent Deep Excavation (깊은 굴착에서 근접시공에 따른 구조물 피해사례 연구)

  • 김성욱;김주봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.113-120
    • /
    • 1999
  • Deep excavation,1 in the urban areas may cause terrible damages to the adjacent structures. Most damages are due to the settlement of ground during excavation work. This article introduces two actual examples of structure damage in subway construction projects. A through of attempts to find out the factors that are affecting to the settlement of ground was made through site investigations and analyses of measurement data. Some suggestions are given to prevent the repeat of trial and error in deep excavation projects. This kind of attempts are eccentrical to the development and improvement of information-oriented construction method.

  • PDF

Behavior of the Ground under a Building due to Adjacent Ground Excavation (근접굴착시 건물 하부 지반의 거동)

  • Lee, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.49-55
    • /
    • 2018
  • A pre-load of bracing was imposed to prevent the horizontal displacement on the strut of the braced wall adjacent to the building during the ground excavation. For this purpose, large scale model tests were conducted, without and with pre-load on braced wall. Adjacent building load was also imposed in different locations, that were 0 m, 1D, 2D on ground surface. In this study, model tests in 1:10 scale were performed in real construction sequences, and adjacent building was 12 m in width and the size of model test pit was 2 m in width, 6 m in height, and 4 m in length. As a result, it was found that the stability of the existing building adjacent to the braced wall within Rankine's active zone could be greatly enhanced when the horizontal displacement of the braced wall was reduced by applying a pre-load. which was larger than the designated axial force on the strut of the braced wall.

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Prediction of Deep Excavation-induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 굴착에 따른 지표침하평가)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.69-76
    • /
    • 2003
  • This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Prediction of Deep Excavation-induced Ground Surface Movements Using Artificial Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.53-65
    • /
    • 2004
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network(ANN) technique, which is of prime importance in the damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements, was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Artificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effective for a first-order prediction of ground movements associated with deep-excavation.

Model Tests on Ground Deformation during Trench Excavation for Diaphragm Walls (지중연속벽 시공을 위한 트렌치 굴착시 지반변형에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.77-88
    • /
    • 2006
  • A series of model tests were performed to investigate the ground deformation during trench excavation for diaphragm walls. An apparatus was manufactured to observe the failure pattern of a slurry-supported trench in sandy ground. Ground deformations including settlement and lateral displacement of the surrounding ground adjacent to the trench were carefully monitored during excavation. Experimental observations indicated that the settlement of the adjacent ground increased with closing to the trench. Especially, the considerable settlement occurred at the distance which was equal to 40% of the excavation depth. And, the higher settlement was obtained when the relative density of ground was looser and the ground water table was higher. Also, the lateral wall face of excavated trench was bulged with lowering the slurry level In stages and then the upper part of trench failed finally. The envelope of ground surface settlement could be represented as a hyperbolic line and the measured settlement was smaller than those predicted by Clough and O'Rourke (1990).

Numerical Analysis for the Assessment of Building Damage in Urban Excavation (지반굴착시 인접구조물의 손상 영향 평가에 대한 수치해석)

  • 이민근;황의석;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.561-568
    • /
    • 2003
  • The protection of adjacent structures in urban excavation has been an important issue. But the research on the interaction between ground movements and adjacent structure has been scarce, therefore this study was necessitated. Current design practice for the prediction of excavation-induced ground movements heavily rely on empirical method. In this study, damage levels of brick building are examined closely by means of angular distortion, deflection ratio, horizontal strain. The results of numerical analysis indicated that the movement of actual building was 60∼65% of the ground movement, while angular distortion was 45∼65%. Also numerical analysis for the assessment of brick building can be applied to the building protection at various construction stages.

  • PDF

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

Model Tests for the Effect of Settlement Restraint of Adjacent Structure During Tunnel Excavation (터널굴착에 따른 인접 구조물 침하 억제효과에 관한 실내모형실험)

  • 유문오;임종철;고호성;박이근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, differential settlements of adjacent structure and behaviour of ground during tunnel excavation and the effect of micropile installed to preserve differential settlement of structure are measured and analyzed by model test. In the test results, the effective range of reinforcement is suggested.

  • PDF

BRACED EXCAVATION NEAR THE EXISTING STRUCTURES

  • Maruoka, Masao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.129-144
    • /
    • 1990
  • This paper is an introduction of measured samples of a peripheral ground displacement resulting from excavation work, and the work carried out to minimize the displacement of the earth retaining wall and the adjacent structures.

  • PDF