• Title/Summary/Keyword: Adipocytes

Search Result 694, Processing Time 0.03 seconds

Fucoidan Stimulates Glucose Uptake via the PI3K/AMPK Pathway and Increases Insulin Sensitivity in 3T3-L1 Adipocytes (후코이단의 3T3-L1 지방세포에서 PI3K/AMPK 경로를 통한 포도당 흡수 촉진 및 인슐린 민감성 증진 효과)

  • Lee, Ji Hee;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Brown seaweeds have been shown to decrease blood glucose levels and improve insulin sensitivity previously. In this study, we investigated the effect of fucoidan, a complex polysaccharide derived from brown seaweeds, on glucose uptake to improve insulin resistance, and examined its mechanism of action in 3T3-L1 adipocytes. We observed that fucoidan significantly increased glucose uptake and it was related to an increased expression of plasma membrane-glucose transporter 4 (PM-GLUT4) in 3T3-L1 adipocytes. Fucoidan treatment increased the activation of phosphatidylinositol-3-kinase (PI3K) and the phosphorylation of insulin receptor substrate 1 (IRS1tyr) compared with that of the control cells. Fucoidan also promoted the phosphorylation of Akt and protein kinase C (PKC)-λ/ζ compared to that of the control cells. Moreover, fucoidan significantly upregulated acetyl-CoA-carboxylase (ACC) and adenosine monophosphate - activated protein kinase (AMPK) phosphorylation. As a result, translocation of GLUT4 was significantly enhanced in 3T3-L1 adipocytes, which significantly promoted glucose uptake via the PI3K/AMPK pathways. The elevation of glucose uptake by fucoidan was blocked by inhibitor of PI3K and inhibitor of AMPK in 3T3-L1 adipocytes. These findings indicate that fucoidan might ameliorate glucose uptake through GLUT4 translocation to the plasma membrane by activating the PI3K/Akt and AMPK pathways in 3T3-L1 adipocytes. Fucoidan is thought to be of high material value to diabetes treatments and functional foods.

Effects of steamed Polygonatum odoratum extract on inhibition of adipocyte differentiation and lowing lipid in 3T3-L1 adipocytes (증자 둥굴레 추출물의 3T3-L1 지방세포에서 분화억제 및 지질강하 효과)

  • Kang, Byung Tae;Choe, Won Kyung;Park, Dong Cheol;Kim, Jong Kuk;Park, Mora;Kim, Sung Ok;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate inhibitory effects of steamed Polygonatum odoratum extract (POE) on differentiation and adipogenesis in 3T3-L1 adipocytes. Methods : Polygonatum odoratum (P. odoratum) extract was extracted with ethyl acetate. Total phenolic and flavonoid contents in POE were measured for antioxidant activity. The spectrophotometric method was used to determine the DPPH and ABTS radical scavenging activity and ferric-reducing antioxidant potential (FRAP). MTT assay was examined for cell toxicity, oil red O staining was performed for intracelluar adipogenesis in differentiated 3T3-L1 adipocytes. Western blot analysis for measurement of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), peroxisome proliferator-activated receptor${\gamma}$ ($PPAR{\gamma}$) and AMP-activated protein kinase (AMPK) expressions were performed. Results : The results revealed that POE has antioxidant activities. Contents of total polyphenolics and flavonoids were $50.83{\pm}1.52$ GAE mg/100g dry weight of POE and $17.05{\pm}2.47$ RE mg/100g dry weight of POE, respectively. DPPH radical scavenging activity, and FRAP in 10 mg/ml concentration were $92.1{\pm}0.6%$, $244.8{\pm}9.0{\mu}M$ Fe(II) and ABTS inhibition in 5 mg/ml concentration was $84.8{\pm}4.1%$. Treatment of POE in adipocytes inhibited the differentiation and adipogenesis of 3T3-L1 adipocytes compared to those of vehicle control. Additionally, protein expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, major transcription factor for the adipogenic genes, were significantly decreased compared to those of vehicle control (p<0.05). Futhermore, phosphorylation of AMPK was increased in 3T3-L1 adipocytes treated with POE compared to that of vehicle control (p<0.05). Conclusions : we demonstrate that steamed P. odoratum extract (POE) has potentiating antioxidant activities, inhibits differentiation and lipid accumulation and also induces energy expenditure in adipocytes, which may contribute to antiobesity property.

Anti-lipogenic Effects of Tannic Acid in 3T3-L1 Adipocytes and in High Fat Diet-fed Rats

  • Kim, Hyun-Ju;Yun, Ye-Rang;Song, Yeong-Bok;Song, Yeong-Ok
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.362-366
    • /
    • 2008
  • Anti-lipogenic effects of tannic acid on 3T3-L1 adipocytes as well as on rats fed high fat diet (HFD) were investigated. Tannic acid stimulated lipolysis through suppression of the leptin secretion and an increase of glycerol release in a dose dependent manner in 3T3-L1 adipocytes. For animal study, the rats were fed either HFD or HFD supplemented with 1%(w/w) tannic acid (HFDT) for 12 weeks, respectively. Body weight gain, liver weight, and visceral fat mass in rats fed HFDT were significantly decreased compared to those of rats fed HFD. The lipid profiles of HFDT group were significantly decreased compared with HFD group in the serum and liver, whereas fecal total cholesterol excretion was increased in HFDT group. These results suggest that anti-lipogenic effect of tannic acid in 3T3-L1 adipocytes and in rats fed HFD may be due to the stimulation of lipolysis and the reduction of lipid levels.

The Lipogenic Capacity of Hepatocytes and Lipolytic Rate of Adipocytes in Tsaiya Ducks during Growing and Laying Periods

  • Lien, T.F.;Jan, D.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1258-1262
    • /
    • 1999
  • With an attempt to elucidating the lipid metabolism of Tsaiya ducks, thirty ducks at growing (8 weeks of age) and laying periods (10 weeks after the onset of laying) were examined, respectively. The ducks were randomly allocated into ad libitum feeding and 3-day fasting groups, to investigate their in vitro hepatocytes lipogenesis capacity and adipocytes lipolysis rate. Results indicate that (1) the capacity of hepatocytes incorporation of glucose and acetate into total lipid and metabolite of $^{14}CO_2$ production during the laying period was greater than during the growing period. Approximately 50% of the glucose or acetate converted into triacylglycerol (TG) by the hepatocytes were recovered as fatty acid during the growing period, while it was 65-70% during the laying period. (2) Acetate used for lipogenesis ability was superior to glucose in both periods. (3) The adipocytes lipolysis rate was increased significantly (p<0.05) by fasting. In contrast, the capacity of incorporated glucose or acetate into total lipid, triacylglycerol, fatty acid and glycerol by hepatocytes was reduced significantly (p<0.05) by fasting.

Medicarpin induces lipolysis via activation of Protein Kinase A in brown adipocytes

  • Imran, Khan Mohammad;Yoon, Dahyeon;Lee, Tae-Jin;Kim, Yong-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.249-254
    • /
    • 2018
  • Natural pterocarpan Medicarpin (Med) has been shown to have various beneficial biological roles, including inhibition of osteoclastogenesis, stimulation of bone regeneration and induction of apoptosis. However, the effect of the Med on lipolysis in adipocytes has not been reported. Here, we show the effect of Med on lipolysis in different mouse adipocytes and elucidate the underlying mechanism. We observed that Med treatment promoted release of glycerol in the media. Differentiated mouse brown adipose tissue cells were treated with Med. RNA-Seq analysis was performed to elucidate the effect of med and subsequently was confirmed by qRT-PCR and western blotting analyses. Med treatment increased both protein and gene expression levels of hormone-sensitive lipase (Hsl) and adipose triglyceride lipase (Atgl), which are two critical enzymes necessary for lipolysis. Mechanistic study showed that Med activates Protein Kinase A (PKA) and phosphorylates Hsl at PKA target position at $Serine^{660}$. Silencing of PKA gene by short interfering RNA attenuated the Med-induced increase in glycerol release and Hsl phosphorylation. The results unveil that Med boosts lipolysis via a PKA-dependent pathway in adipocytes and may provide a possible avenue of further research of Med mediated reduction of body fat.

Intensive Proteomic Approach to Identify Secreted Peptides/Proteins from 3T3-L1 Adipocytes using Gel Electrophoresis and Liquid Chromatograph Separation Methods (젤 전기영동 및 액체 크로마토그래피 분리 방법을 이용하여 지방 세포로부터 분비되는 단백질들에 대한 프로테오믹스 연구 방법)

  • Hwang, Hyun-Ho;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.203-212
    • /
    • 2011
  • Adipocytes have been known to secrete a number of important proteins called adipokines with roles in energy metabolism, reproduction, cardiovascular function and immunity. In this study we have attempted to identify intensively secretory proteins from 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into mature adipocytes and then the cells were left in serum-free medium. The supernatant was filtrated and dialyzed. Lyophilized secretome was fractionated by two different methods, 1-D SDS PAGE and RP-FPLC. The tryptic peptides from the gel slices and the FPLC fractions were analyzed by nanoLC/ESI-MS/MS. We identified a total of 303 identical proteins from two methods, 251 proteins from 1-D gel and 184 proteins from RP-FPLC. 86 of them were listed as a secretory protein Finally, we identified many known or unknown secreted proteins existed in the low level including adiponectin, angiotensinogen, bone morphogenetic protein-1 (BMP-1), macrophage migration inhibitory factor (MIF), insulin like growth factor-II (IGF-II), interleukin-6 (IL-6), follistatin-related protein-1, minecan, and resistin. The existence of some of secreted proteins has been confirmed in RNA level. This proteomic experiment is useful for the intensive screening of secretory proteins in many kinds of other cells.

Inhibitory Effects of Cultivated Wild Ginseng on the Differentiation of 3T3-L1 Pre-adipocytes

  • Mollah, Mohammad Lalmoddin;Cheon, Yong-Pil;In, Jun-Gyo;Yang, Deok-Chun;Kim, Young-Chul;Song, Jae-Chan;Kim, Kil-Soo
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • Wild ginseng has been used as a traditional medicine for thousands of years and for increase physical strength in Korea, China and Japan. This study reports that cultivated wild ginseng (CWG) inhibits adipocyte differentiation of 3T3-L1 pre-adipocytes in a concentration-dependent manner. Inhibition of adipocyte differentiation is one possible anti-obesity strategy. CWG inhibits the expression of the adipocyte differentiation regulator peroxisome proliferators-activated receptor (PPAR)${\gamma}$ and CCAAT/enhancer-binding protein ${\alpha}$mRNA. It also inhibited the expression of PPAR${\gamma}$ and adiponectin at the protein level during the differentiation of pre-adipocytes into adipocytes. Additionally, CWG blocked the cell cycle at the sub-$G_1$ phase transition, causing cells to remain in the pre-adipocyte state. These results indicate that CWG inhibits adipocyte differentiation and adipogenesis through pre-adipocyte cell cycle arrest in cultured 3T3-L1 cells.

Antioxidative Activities and Inhibitory Effects on Lipid Accumulation of Extracts from Different Parts of Morus alba and Cudrania tricuspidata (뽕나무(Morus alba)와 꾸지뽕나무(Cudrania tricuspidata)의 부위에 따른 항산화 활성 및 3T3-L1세포 지방축적 억제 효과)

  • Kim, Gun-Hee;Kim, Eunhyang
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.138-147
    • /
    • 2019
  • In this study, we examined antioxidative effects and the anti-adipogenesis effect of different parts of Cudrania tricuspidata (C), and Morus alba (M). Total polyphenol contents were highest in M-root ($34.56{\pm}0.045mg\;GAE/g$), and there was no significant difference, between C-root and M-leaf. Total flavonoid contents of C-root were highest ($23.07{\pm}0.004mg\;QE/g$). To examine antioxidant activities of C and M extracts, DPPH and ABTS radical scavenging activity, and FRAP assay, was used. Results show that antioxidant activities of C and M extracts increased, in a dose-dependent manner. Adipocytes are generated by preadipocyte differentiation, during adipogenesis. Matured adipocytes accumulate in abnormal and cause obesity. We investigated effects of leaf and root extracts of C and M, on lipid accumulation, in 3T3-L1 adipocytes. Changes in cell morphology, and degrees of lipid accumulation in adipocytes, were evaluated by Oil Red O staining. Root extracts of C and M, reduced lipid content in a dose-dependent manner. Therefore, root extracts of C and M, may be good candidates for managing obesity.

Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors

  • Kiros Haddish;Jong Won Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1268-1280
    • /
    • 2023
  • Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levelswere also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.