Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.1.1

Fucoidan Stimulates Glucose Uptake via the PI3K/AMPK Pathway and Increases Insulin Sensitivity in 3T3-L1 Adipocytes  

Lee, Ji Hee (Department of Food Science and Nutrition, Pusan National University)
Park, Jae Eun (Department of Food Science and Nutrition, Pusan National University)
Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.31, no.1, 2021 , pp. 1-9 More about this Journal
Abstract
Brown seaweeds have been shown to decrease blood glucose levels and improve insulin sensitivity previously. In this study, we investigated the effect of fucoidan, a complex polysaccharide derived from brown seaweeds, on glucose uptake to improve insulin resistance, and examined its mechanism of action in 3T3-L1 adipocytes. We observed that fucoidan significantly increased glucose uptake and it was related to an increased expression of plasma membrane-glucose transporter 4 (PM-GLUT4) in 3T3-L1 adipocytes. Fucoidan treatment increased the activation of phosphatidylinositol-3-kinase (PI3K) and the phosphorylation of insulin receptor substrate 1 (IRS1tyr) compared with that of the control cells. Fucoidan also promoted the phosphorylation of Akt and protein kinase C (PKC)-λ/ζ compared to that of the control cells. Moreover, fucoidan significantly upregulated acetyl-CoA-carboxylase (ACC) and adenosine monophosphate - activated protein kinase (AMPK) phosphorylation. As a result, translocation of GLUT4 was significantly enhanced in 3T3-L1 adipocytes, which significantly promoted glucose uptake via the PI3K/AMPK pathways. The elevation of glucose uptake by fucoidan was blocked by inhibitor of PI3K and inhibitor of AMPK in 3T3-L1 adipocytes. These findings indicate that fucoidan might ameliorate glucose uptake through GLUT4 translocation to the plasma membrane by activating the PI3K/Akt and AMPK pathways in 3T3-L1 adipocytes. Fucoidan is thought to be of high material value to diabetes treatments and functional foods.
Keywords
3T3-L1 adipocytes; fucoidan; glucose uptake; GLUT4; PI3K/Akt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ji-Ming, Y., Ruderman, N. B. and Kraegen, E. W. 2005. AMP-activated protein kinase and malonyl-CoA: targets for treating insulin resistance? Drug Discov. Today Ther. Strateg. 2, 157-163.   DOI
2 Kahn, B. B. 1996. Glucose transport: pivotal step in insulin action. Diabetes 45, 1644-1654.   DOI
3 Kamei, R., Kadokura, M., Kitagawa, Y., Hazeki, O. and Oikawa, S. 2003. 2′-Benzyloxychalcone derivatives stimulate glucose uptake in 3T3-L1 adipocytes. Life Sci. 73, 2091-2099.   DOI
4 Kim, K. J., Yoon, K. Y. and Lee, B. Y. 2012. Fucoidan regulate blood glucose homeostasis in C57BL/KSJ m+/+db and C57BL/KSJ db/db mice. Fitoterapia 83, 1105-1109.   DOI
5 Kwak, J. Y. 2014. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 12, 851-870.   DOI
6 Lee, H., Li, H., Jeong, J. H., Noh, M. and Ryu, J. H. 2016. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes. Fitoterapia 112, 90-96.   DOI
7 Lehnen, A. M., Leguisamo, N. M., Pinto, G. H., Markoski, M. M., De Angelis, K., Machado, U. F. and Schaan, B. 2010. The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc. Diabetol. 9, 67.   DOI
8 Li, B., Lu, F., Wei, X. and Zhao, R. 2008. Fucoidan-A α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. Molecules 13, 1671-1695.   DOI
9 Saltiel, A. R. 2001. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104, 517-529.   DOI
10 Bandyopadhyay, G., Standaert, M. L., Sajan, M. P., Karnitz, L. M., Cong, L., Quon, M. J. and Farese, R. 1999. Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-zeta. Mol. Endocrinol. 13, 1766-1772.   DOI
11 Chen, Y., Liu, Y., Sarker Md, M. R., Yan, X., Yang, C., Zhao, L., Lv, X., Liu, B. and Zhao, C. 2018. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydr. Polym. 198, 452-461.   DOI
12 Choi, K. and Kim, Y. B. 2010. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Kor. J. Intern. Med. 25, 22.
13 Fulcher, F. K., Smith, B. T., Russ, M. and Patel, Y. 2008. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Exp. Cell. Res. 4, 3264-3274.
14 Green, H. and Kehinde, O. 1974. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1, 113-116.   DOI
15 Hardie, D. G. 2011. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908.   DOI
16 Zuo-Qi, X., Yong-Long, W., Su-Ran, G. and Jia-Chun, C. 2014. Polysaccharides from Liriopes Radix ameliorates hyperglycemia via various potential mechanisms in diabetic rats. J. Sci. Food Agric. 94, 975-982.   DOI
17 Hayashi, T., Wojtaszewski, J. F. and Goodyear, L. J. 1997. Exercise regulation of glucose transport in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 273, 1039-1051.
18 Huang, M., Wang, F., Zhou, X., Yang, H. and Wang, Y. 2015. Hypoglycemic and hypolipidemic properties of polysaccharides from Enterobacter cloacae Z0206 in KKAy mice. Carbohydr. Polym. 117, 91-98.   DOI
19 Jiao, G., Yu, G., Zhang, J. and Ewart, H. S. 2011. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells. Mar. Drugs 9, 196-223.   DOI
20 Sanjeewa, K. K. A., Lee, J. S., Kim, W. S. and Jeon, Y. J. 2017. Fucoidan and cancer: a multifunctional molecule with antitumor potential. Carbohydr. Polym. 177, 451-459.   DOI
21 Victor Lin, H. T., Tsou, Y. C., Chen, Y. T., Lu, W. J. and Hwang, P. A. 2017. Effects of low-molecular-weight fucoidan and high stability fucoxanthin on glucose homeostasis, lipid metabolism, and liver function in a mouse model of type II diabetes. Mar. Drugs 15, 113.   DOI
22 Ale, M. T., Mikkelsen, J. D. and Meyer, A. S. 2011. A review about the development of fucoidan in antitumor activity: progress and challenges. Mar. Drugs 9, 2106-2130.   DOI
23 Alonso-Castro, A. J., González-Chávez, M. M., Miranda-Torres, A. C. and Salazar-Olivo, L. A. 2008. Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBD glucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. J. Ethnopharmacol. 120, 458-464.   DOI
24 Schenk, S., Saberi, M. and Olefsky, J. M. 2008. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992-3002.   DOI
25 Senthilkumar, K., Manivasagan, P., Venkatesan, J. and Kim, S. K. 2013. Fucoidan: structure and bioactivity. Int. J. Biol. Macromol. 60, 366-374.   DOI
26 Sim, S. Y., Shin Y. E. and Kim, H. K. 2019. Fucoidan from Undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3T3-L1 adipocytes. Nutr. Res. 65, 54-62.   DOI
27 Atashrazm, F., Lowenthal, R. M., Woods, G. M., Holloway, A. F. and Dickinson, J. L. 2013. Fucoidan as a marine anticancer agent in preclinical development. Mar. Drugs 13, 2327-2346.   DOI
28 Takaguri, A., Inoue, S., Kubo, T. and Satoh, K. 2016. AMPK activation by prolonged stimulation with interleukin-1beta contributes to the promotion of GLUT4 translocation in skeletal muscle cells. Cell. Biol. Int. 40, 1204-1211.   DOI
29 Taylor, S. I. 1999. Deconstructing type 2 diabetes. Cell 97, 9-12.   DOI
30 Turban, S., Stretton, C., Drouin, O., Green, C. J., Watson, M. L., Gray, A., Ross, F., Lantier, L., Viollet, B., Hardie, D. G., Marette, A. and Hundal, H. S. 2012. Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J. Biol. Chem. 287, 20088- 20099.   DOI
31 Vinoth Kumar, T., Lakshmanasenthil, S., Geetharamani, D., Marudhupandi, T., Suja, G. and Suganya, P. 2015. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Int. J. Biol. Macromol. 72, 1044-1047.   DOI
32 Xiong, H., Zhang, S., Zhao, Z., Zhao, P., Chen, L. and Mei, Z. 2018. Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway. J. Ethnopharmacol. 211, 366-374.   DOI
33 Viollet, B., Foretz, M., Guigas, B., Horman, S., Dentin, R., Bertrand, L., Hue, L. and Andreelli, F. 2006. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J. Physiol. 574, 41-53.   DOI
34 Wang, P., Liu, Z., Liu, X., Teng, H., Zhang, C., Hou, L. and Zou, X. 2014. The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran. a9, 106071.
35 Wang, Y., Shao, S., Xu, P., Chen, H., Lin-Shiau, S. Y., Deng, Y. T. and Lin, J. K. 2012. Fermentation process enhanced production and bioactivities of oolong tea polysaccharides. Food Res. Int. 46, 158-166.   DOI
36 Watson, R. T., Kanzaki, M. and Pessin, J. E. 2004. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. J. Endocr. Rev. 25, 177-204.   DOI
37 Wu, L., Sun, J., Su, X., Yu, Q., Yu, Q. and Zhang, P. 2016. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Carbohydr. Polym. 154, 96-111.   DOI
38 Yoshioka, Y., Harada, E., Ge, D., Imai, K., Katsuzaki, H., Mishima, T., Gabazza, E. C. and Ashida, H. 2017. Adenosine isolated from Grifola gargal promotes glucose uptake via PI3K and AMPK signaling pathways in skeletal muscle cells. J. Funct. Foods 33, 268-277.   DOI
39 Zheng, D. H., MacLean, P. S., Pohnert, S. C., Knight, J. B., Olson, A. L., Winder, W. W. and Dohm, G. L. 2001. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J. Appl. Physiol. 91, 1073-1083.   DOI