• Title/Summary/Keyword: Adhesive substrates

Search Result 95, Processing Time 0.037 seconds

Characteristics of Adhesive Disks in Parthenocissus tricuspidata during Attachment (착생에 따른 담쟁이덩굴 흡착근의 부착 특성)

  • Lee, Myung-Hui;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • Parthenocissus tricuspidata is an epiphyte that lacks a main axial stem, but develops adhesive disks along the stem for climbing support. In this study, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were utilized to examine the brick wall surface and the adhesive disks of P. tricuspidata that attached to the surface successfully. The study was mainly focused the outermost layers of both structures before and after adhesion to find out whether there has been some structural and/or physical interactions between the two. The adhesive disks adhered firmly to the brick wall by secreting adhesive materials that help them for a tight attachment to the surface. The rough wall surface appeared facilitating better attachment of the adhesive disks by infiltrating the materials into those spaces leading to some degree of interactions at the interface. EDS analysis on the outermost layers of the adhesive disks that were separated from the substrates was also consistent with the SEM data on the interaction between the adhesive disks and the substrate surface. EDS analysis of the brick wall surface and the adhesive disks demonstrated similar elements of O, Si, Fe, Al, K, Mg, and Na in their components.

The Study on a sensitive current limiting breaking device using RF Sputtering (RF Sputtering을 이용한 전류 민감성 차단 디바이스에 관한 연구)

  • Lee, S.H.;Jeong, K.H.;Park, D.K.;Kim, Y.L.;Lee, J.C.;Koo, K.W.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1088-1092
    • /
    • 1995
  • In this paper, we evaluated the sputter-deposited Cr/Cu thin film fuses on $Al_2O_3$ substrates by the adhesive, breaking and repetitive over-current test as a function of temperature on them. Each Cr and Cu was deposited $1700{\pm}300{\AA},\;3700{\pm}300{\AA}$ using RF sputtering unit. The electroplated Cu of $25{\mu}m$ thickness was added in order to make sensitive thin film fuse of the normal current 15[A]. The adhesive strength and the number of repetition were Increasing and then decreasing with the temperature. The maximum adhesive strength of over $9kgf/9mm^2$ was obtained at $400^{\circ}C$. In the breaking test, the post-arc time characteristic was better than any other factor.

  • PDF

Application of Single Lap-Shear Test for Extracting Adhesive Bonding Strength of Coating Layer on Galvannealed sheet (합금화용융아연코팅강판의 코팅층 접합강도 평가를 위한 단일 겹치기이음 시험의 적용)

  • Lee, Jung-Min;Lee, Cha-Joo;Lee, Sang-Gon;Ko, Dae-Cheol;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.238-243
    • /
    • 2007
  • This paper is designed to estimate the adhesion strength of coating layer on galvannealed steel sheet using lap shear test. The single lap shear test is the most commonly used standard test for determining the strength of medium-strength and high strength bonds. The bond strength of bonded single lap joints on subjecting the substrates to loads is determined by lap shear forces in the direction of the bonded joint. In this study, specimen for adhesion strength test was made to attach coated sheet to cold rolled sheet and were heated in temperature of 180 for 20minutes. After test, detached parts of coatings on coated sheet were observed using SEM and EDX to identify substrate and complete detachment. The tested results showed that adhesive strength of coating is unrelated to anisotropy of sheet and is difficult to be extracted using conventional theory because of fine cracks of coating layers which were created during annealing process.

  • PDF

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Adhesive improvement of the Polyimide/Buffer layer/Cu at the COF(Chip On Film) (COF(Chip On Film)에서의 Polyimide/Buffer layer/Cu 접착력 향상)

  • 이재원;김상호;이지원;홍순성
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.11-17
    • /
    • 2004
  • This research has been progressed for adhesive improvement of the Polyimide/Buffer layer/Cu at the COF(Chip On Film) which induced as the alternative plan about high concentration of a circuit or substrates according to demands of miniaturization and high efficiency of various electronic equipment. RF plasma equipment was applied to when plama pretreatment was performed for improvement of adhesive strength of PI and Cr as the buffer layer. Experimental fluents were a species of the buffer layer, depositied time and the ratio of $O_2$/Ar when performed to plasma pretreatment. The results are that Ni was superior to Cr at peel test according to a species of the buffer layer, peel strength and Cu THK were showed proportional relation to deposition structure of the same buffer layer and sample of the Cr depositied time(30 sec) and Cu depositied time(20 min) was showed good adhesion to peel test according to Cr's depositied time and Cu's depositied time. When perform PI's plasma pretreatment peel strength and $O_2$/Ar ratio were showed proportional relation. But $O_2$/Ar(2/5) was best condition since then decreased.

  • PDF

Influence of the Adhesive, the Adherend and the Overlap on the Single Lap Shear Strength

  • da Silva, Lucas F.M.;Ramos, J.E.;Figueiredo, M.V.;Strohaecker, T.R.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The single lap joint is the most studied joint in the literature in terms of both theory and practice. It is easy to manufacture and the lap shear strength is a useful value for strength assessment and quality control. Simple design rules exist such as the one present in standard ASTM 1002 or in a recent paper by Adams and Davies. The main factors that have an influence on the lap shear strength are the type of adhesive, i.e. ductile or brittle, the adherend yield strength and the overlap length. The overlap increases the shear strength almost linearly if the adhesive is sufficiently ductile and the adherend does not yield. For substrates that yield, a plateau is reached for a certain value of overlap corresponding to the yielding of the adherend. For intermediate or brittle adhesives, the analysis is more complex and needs further investigation. In order to quantify the influence of the adhesive, the adherend and the overlap on the lap shear strength, the experimental design technique of Taguchi was used. An experimental matrix of 27 tests was designed and each test was repeated three times. The influence of each variable could be assessed as well as the interactions between them using the statistical software Statview. The results show that the most important variable on the lap shear strength is the overlap length followed by the type of adherend.

  • PDF

Textile Adhesion Properties of Polyurethane Hot Melt Adhesives Containing Ester Groups (에스터기를 함유한 폴리우레탄 핫멜트 접착제의 직물에 대한 접착물성)

  • RANJi, Sepideh;LEE, Myung Cheon
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.118-122
    • /
    • 2018
  • In this study, polyurethane hot melt adhesive containing ester groups was synthesized. Three kinds of chain extenders were used to find out the best chain extender. Results showed that adhesive containing 1,4-butanediol as a chain extender exhibited the highest peel strength among them. Also, it was found that there existed the optimum molecular weight of 1,4-butanediol containing adhesive for make the highest peel strength.. Moreover, hot melt adhesive containing 1,4-butanediol chain extender was applied to various kinds of textiles substrate such as cotton, polyester, and urethane coated polyester textiles to study the effects of different substrates on the peel strength and water resistance at $60^{\circ}C$. It was found that cotton substrate showed the highest peel strength and urethane coated polyester substrate showed the highest resistance on $60^{\circ}C$ water.

Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages (신축성 전자패키지용 강성도 국부변환 신축기판의 계면접착력 향상공정)

  • Park, Donghyeun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.111-118
    • /
    • 2018
  • In order to develop a local stiffness-variant stretchable substrate with the soft PDMS/hard PDMS/FPCB configuration consisting of two stiffness-different polydimethylsiloxane (PDMS) parts and flexible printed circuit board, a FPCB was bonded to PDMS using the acrylic-silicone double-sided tape and the interfacial adhesion of the PDMS/FPCB was evaluated. The pull strength of the FPCB, which was bonded to the fully cured PDMS using the silicone adhesive of the double-sided tape, was 259 kPa and the delamination during the pull test occurred at the interface between the PDMS and the silicone adhesive. On the contrary, the bonding process, for which the FPCB was bonded using the silicone adhesive to the PDMS partially cured for 15~20 minutes at $60^{\circ}C$ and then the PDMS was fully cured for 12 hours at $60^{\circ}C$, exhibited the remarkably enhanced pull strength of 1,007~1,094 kPa. With the above mentioned bonding process, the delamination during the pull test was observed at the interface between the FPCB and the acrylic adhesive of the acrylic-silicone double sided tape.

Adhesion Strength Measurement of Rabbit Knee Chondrocyte (연골세포 부착력 평가)

  • Lee Kwon-Yong;Park Sang-Guk;Shin Daehwan;Park Jong-Chul
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.236-240
    • /
    • 2005
  • In order to prepare for the suitable surfaces of implants or medical devices, quantitative evaluation of adhesion between cells and biomaterials is essential. To better understand adhesion formation between cells and biomaterials, we used the cytodetachment technique which measures the adhesive force of a single cell through changing the, culture time and detachment speed. The results showed that the adhesive force could be affected by the culture time of cells on the surface of materials and the detachment speed. Moreover, there was a large discrepancy among the adhesion strength measured by similar techniques conducted on the different cells and substrates. It can be 'concluded that the variation of the force measurement technique can seriously alter the level of the force required to detach a cell on the surface of materials.

Adhesion Strength Measurement of Chondrocyte (연골세포 부착력 평가)

  • Lee K. Y.;Park S. K.;Shin Deahwan;Park J. C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.362-366
    • /
    • 2004
  • Quantitative evaluation of substrates for cells is essential to understanding cell-material adhesive interaction and it is also necessary for the development of new biomaterials. Many cells on adhesive molecules will form an organization of actin into bundles and production of the large, highly organized structures termed focal adhesions. To better understand adhesion formations between cells and substrata, we have quantified the force required to displace attached cell. we allowed rabbit knee chondrocyte to attach on a substratum of microscope slide glass. Our results demonstrate that a force is required to detach cells is changed according to detachment time variation.

  • PDF