• Title/Summary/Keyword: Adhesive Joints

Search Result 207, Processing Time 0.027 seconds

Shape Design of Adhesive Joints for Strength Improvement of Epoxy Adhesive Structures (에폭시 접착제 접합구조물의 강도향상을 위한 접착부 형상설계)

  • Seo, Do-Won;Kim, Hyo-Jin;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.783-790
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5 mm/min. As a result, the load-displacement distribution was shown a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

Effect of Joint Reformation on Adhesive Strength of 6061 Aluminum Alloy to Polycarbonate Lap Structures

  • D. W. Seo;Kim, H. J.;J. K. Lim
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5mm/min. As a result, the load distribution showed a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

  • PDF

Stress Distribution and Strength Evaluation of Adhesive Bonded Single-lap Joints (단일겹침 접착제 접합부의 응력분포와 강도평가)

  • 이중삼;임재규;김연직
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.342-347
    • /
    • 2001
  • Recently, adhesive-bonding technique is wifely used in manufacturing structures. Stress and strain analysis of joints are essential to design adhesive-bonded joints structure. The single-lap adhesive joint is the design dominating the range of adhesive joints. In this study, single-lap specimens with different joint dimensions were used for the tensile-shear test and finite element calculation in of order to investigate the effect of overlap length and adhesive-bonding thickness on adhesive strength and stress distribution of the joints. Consequently, it was found that overlap lap size and thickness can be important parameters of structure joints using adhesive bonding, which is effected on adhesive strength.

  • PDF

Effect of Surface Treatment on Adhesive Strength Properties of Al/PC Adhesive Joints (Al/PC 접합재의 접착강도특성에 미치는 표면처리의 영향)

  • Seo, Do-Won;Yoon, Ho-Cheol;Yoo, Sung-Chol;Lim, Jae-Kyoo;Lutz Dorn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.840-847
    • /
    • 2003
  • The bonding of adhesive joints of adhesive joints is influenced by the surface roughness of the joining Parts. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, it is shown that surface treatment affects adhesive strength and durability of alumina/polycarbonate single-lap .joints, and leading speed affects tensile-shea strength of adhesive Joints. To evaluate effect of surface treatments on the adhesive strength, several surface treatment methods are used, that is, cleaning, grinding, SiC polishing and sand blasting. It is shown that an optimum value of the surface roughness exists with respect to the tensile-shea strength of adhesive joints. The adhesive strength shows linear relationship with the surface roughness and loading speed. And the mechanical removal of disturbing films of lubricants, impurities and oxides make adhesive strength increase significantly.

Effect of the Cross Sectional Shapes on the Static and Fatigue Torque Transmission Capabilities of Adhesive Single Lap Joints (단면형상에 따른 단일겹치기 이음의 피로 및 정적 토크 전달특성에 관한 실험적 연구)

  • 최진경;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.835-845
    • /
    • 1994
  • In this paper, the effects of the adhesive thickness and adherend roughness on the static and fatigue strengths of the adhesively bonded circular single lap joints has been investigated by an experimental method. The stacking sequence effect of the composite adherend on the static and fatigue strength and the fracture patterns of the adhesive failure were also observed. Since the circular single lap joint fails catastrophically beyond the static strength of fatigue limit, the tubular polygonal adhesively bonded joints such as triangular, tetragonal, pentagonal, hexagonal as well as elliptical joints were manufactured in order to give partial mechanical characteristics to the adhesively bonded tubular joints. These joints were tested both in static and fatigue modes. From the experimental investigations, it was found that the fatigue strength of the circular adhesively bonded joints was much dependent on the arithmetical average surface roughness of the adherends and the polygonal adhesively bonded joints had better fatigue strength characteristics than the circular adhesively bonded joints.

Effects of the Adhesive Thickness and Residual Thermal Stress on the Torque Capacity of Turbular Single Lap Joints (접착제의 두께와 열 응력에 따른 조인트의 토크 특성)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1841-1852
    • /
    • 1992
  • With the wide application of fiber-reinforced composite material in aircraft, space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structures. In this study, the effects of the adhesive thickness, residual thermal stress on the torque capacity of the tubular single lap joints were studied. The torque capacity of the adhesive joints were experimentally determined and found to be inversely proprotional to the adhesive thickness. In order to match the experimental results to the theoretical analyses, the elastic-perfectly plastic material properties of the adhesive were used in the closed form solution. Also, the residual thermal stress of the joints were calculated by the finite element method and it was proved that the residual thermal stress could play an important role in the thick adhesive joints.

A Study on the Strength of Metal-Composite Hybrid Joints (금속-복합재 하이브리드 체결부의 강도 특성 연구)

  • Jung, Jae-Woo;Song, Min-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends (복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측)

  • Oh, Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.