• Title/Summary/Keyword: Adhesion Test

Search Result 1,103, Processing Time 0.024 seconds

Strength Properties of Polymer-Modified Repair Mortars According to Curing Conditions and Repair Methods (양생조건 및 보수방법에 따른 폴리머시멘트모르타르의 강도 성상)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.457-465
    • /
    • 2007
  • In this paper, polymer-modified repair materials using polymer dispersions with six repair methods are prepared with various polymer-cement ratios, and tested for compressive and flexural strengths through each curing condition such as dry cure, water cure, and freezing and thawing cyclic action. And, the adhesive interface between the polymer-modified mortar and mortar substrate is observed by a scanning electron microscope. From the test results, the compressive and flexural strengths of cement mortar repaired by polymer-modified mortar are improved with a rise in the polymer-cement ratio regardless of the type of polymer and curing conditions. Such an improvement in the strengths of polymer-modified repair materials to ordinary cement mortar is explained by the high adhesion of polymer-modified mortar. Strength reduction of polymer-modified repair materials after freezing and thawing cyclic actions is recognized, but it is lower than that of unmodified mortar. Especially, cement mortar repaired by polymer-modified mortar with a St/BA emulsion has good strength properties compared with those of SBR latex and PA emulsion. Accordingly, it is judged that polymer-modified mortars with a St/BA emulsion are possible to use as repair materials to ordinary cement mortar and concrete.

THE INFLUENCE OF $CARISOLV^{TM}$ ON SHEAR BOND STRENGTH OF COMPOSITE RESIN RESTORATIONS ($Carisolv^{TM}$의 사용이 복합레진 수복물의 전단결합강도에 미치는 영향)

  • Kim, Dae-Eop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • This study evaluated the influence of chemomechanical caries removal agent $Carisolv^{TM}$(MediTeam, Sweden) for composite resin adhesion to sound human permanent and primary dentin. The buccal/labial surfaces of 80 permanent molars and 80 primary incisors were used. Four types of adhesives and one composite resin were used; AQ Bond(Sun Medical, Japan), Clearfil SE Bond(Kuraray, Japan), Single Bond(3M, USA), Scotchbond Multi-Purpose(3M, USA) and Z100(3M, USA). One drop of $Carisolv^{TM}$(MediTeam, Sweden) was pretreated on the dentin for 0 second(control) and 60 seconds. The specimens were thermocycled for 1,000 times in baths kept 5 degrees C and 55 degrees C with a 30 seconds dwell time. Shear bond strengths were tested and the data was statistically analyzed using one-way ANOVA with subsequent post hoc Scheffe test at p<0.05. $Carisolv^{TM}$ treatment significantly decreased the shear bond strength. Shear bond strength of permanent dentin was significantly higher than that of primary dentin. Clearfil SE Bond treatment groups showed the highest shear bond strength and AQ Bond treatment groups showed the lowest shear bond strength.

  • PDF

Development of Cylindrical Paperpot Manufacturing Equipment (원통형 종이포트 제조장치 개발)

  • Park, Minjung;Lee, Siyoung;Kang, Donghyeon;Kim, Jongkoo;Son, Jinkwan;Yoon, Sung-wook;An, Sewoong
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • This study was conducted to develop a cylindrical paperpot manufacturing equipment which is capable of continuously producing paperpots with a constant size. The equipment consists of the soil supply part, the paper supply part, the pot manufacturing part, the paperpot cutting part and its process for manufacturing paperpot from the soil supply to the paperpot cutting is continuously performed. As a result of the performance test using this equipment, we suggest that the optimal moisture content and injection pressure to supply soil are 50%~60%, and 0.5 Mpa respectively. Moreover the appropriate temperature for adhesive strength is $150{\sim}160^{\circ}C$ taking into account the performance of device and adhesion time. Also, considering the cutting speed and safety, it is appropriate to adopt a straight blade having a clean plan at a minimum angle of $30^{\circ}$. In addition, the manufacturing capacity of the developed equipment was 3300 pots per hour.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

An Evaluation of Antibacterial Titanium Surface For Dental Implant (치과용 임플란트 적용을 위한 항균력을 가진 티타늄 표면의 평가)

  • Kang, Min-Kyung;Moon, Seung-Kyun;Kim, Kyoung-Nam
    • Journal of dental hygiene science
    • /
    • v.11 no.5
    • /
    • pp.405-410
    • /
    • 2011
  • The aim of this study was to evaluate antibacterial effect of Cl coated titanium. To coat the Cl on the titanium, first, the titanium was modified by blasting treatment with hydroxyapatite and alumina powder. Anodization process was completed using electrolyte solution of 0.04 M ${\beta}$-glycerol phosphate disodium salt n-hydrate, 0.4 M calcium acetate n-hydrate and 1 M NaCl on the condition of 250 voltages for 3 min. Surface morphology and elements' observation were performed with scanning electron microscopy and energy dispersive spectroscopy and surface profiler was used to analyze the surface roughness. Antibacterial effect was evaluated by film adhesion method. The anodized titanium after blasting showed dimpled surface contained the Cl. Surface average roughness of these surfaces had significantly higher compared to polished titanium. Result of antibacterial test showed that anodized titanium after blasting had an enhanced antibacterial effect compared to the polished titanium. Therefore, these results suggested that titanium contained Cl by anodization after blasting had a rough surface as well as antibacterial effect.

Evaluation of Adhesive Strength for Nano-Structured Thin Film by Scanning Acoustic Microscope (초음파 현미경을 이용한 나노 박막의 접합 강도 평가)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • In recent years, nano-structured thin film systems are often applied in industries such as MEMS/NEMS device, optical coating, semiconductor or like this. Thin films are used for many and varied purpose to provide resistance to abrasion, erosion, corrosion, or high temperature oxidation and also to provide special magnetic or dielectric properties. Quite a number of articles to evaluate the characterization of thin film structure such as film density, film grain size, film elastic properties, and film/substrate interface condition were reported. Among them, the evaluation of film adhesive to substrate has been of great interest. In this study, we fabricated the polymeric thin film system with different adhesive conditions to evaluate the adhesive condition of the thin film. The nano-structured thin film system was fabricated by spin coating method. And then V(z) curve technique was applied to evaluate adhesive condition of the interface by measuring the surface acoustic wave(SAW) velocity by scanning acoustic microscope(SAM). Furthermore, a nano-scratch technique was applied to the systems to obtain correlations between the velocity of the SAW propagating within the system including the interface and the shear adhesive force. The results show a good correlation between the SAW velocities measured by acoustic spectroscope and the critical load measured by the nano-scratch test. Consequently, V(z) curve method showed potentials for characterizing the adhesive conditions at the interface by acoustic microscope.

Evaluation on Structural Performance of Joint with Asymmetric Ribbed Connection Details used in Precast Bridge Deck (비대칭 격벽단면을 갖는 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Chung, Chul-Hun;Byun, Tae-Kwan;Kim, In-Gyu;Shin, Dong-Ho;Lee, Han-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • A precast concrete deck system is considered an effective alternative in terms of its rapid construction and quality assurance than cast-in-place concrete deck. In precast concrete deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This research proposes more improved precast deck system with asymmetric ribbed connection details improving the disadvantage of previous precast deck system such as difficulties in assembling precast decks. And in this precast deck system, a separate form is not required at the site because partition wall of the precast decks serves as a form when placing non-shrinkage mortar in the connection part of the precast decks. Therefore, rapid construction is possible. Flexural performance is verified through load tests considering main parameter such as rib length in the precast deck connection. From the test results, it can be inferred that the development of the rebar and prevention of adhesion failure in the partition wall of the precast deck system are important factors in securing the flexural performance. Although the structural performance of the precast deck system with asymmetric connection details is gradually reduced as the rib length in the precast deck connection increases, the proposed precast deck system shows sufficient flexural performance and can be applied to the connection part of precast decks effectively.

Effect of Different Spray Dried Plasmas on Growth, Ileal Digestibility, Nutrient Deposition, Immunity and Health of Early-Weaned Pigs Challenged with E. coli K88

  • Bosi, P.;Han, In K.;Jung, H.J.;Heo, K.N.;Perini, S.;Castellazzi, A.M.;Casini, L.;Creston, D.;Gremokolini, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1138-1143
    • /
    • 2001
  • A total of 96 piglets were weaned at 19 and 13 days in Exp. 1 and 2, respectively, and allotted to one of four diets: three with different spray dried plasmas (SPs) and one with hydrolysed casein (HC). SPs were from pigs (SPP), mixed origin (SMP), and mixed origin with standardized level of immunoglobulins (SMPIG). All the diets contained 1.7% total lysine, 25% of the test protein source, 45% corn starch, 15% lactose, 2% sucrose, 7% soybean oil. At d 4 and d 2 in Exp. 1 and 2, respectively, piglets were perorally challenged with $10^{10}$ CFU E. coli K88. Growth performance, immunity, and health condition were measured for 15 days and 14 days in Exp. 1 and 2, respectively. To investigate apparent ileal digestibility and nutrient deposition, all piglets were sacrificed at d 14 in Exp. 2. In 1. 3 piglets died in HC diet and 1 in SPP diet. HC diet showed higher mortality (p<0.01) than other diets. In Exp. 2, no clinical sign of infection was detected, no difference for the content of E. coli K88 was found in feces at 4 and 6 days after the infection, and no E. coli K88 was found in the jejunum at the end of experiment. In both experiments, feed intake was lower for HC diet and ADG was 96, 106, 122 and 155 for HC, SPP, SMP and SMPIG diet, respectively (HC vs others, p<0.05; SMPIG vs other SP, p<0.01). Heal apparent digestibility of nitrogen in sacrificed piglets was higher for HC diet (p<0.05). After the challenge, K88-specific titers in saliva (Exp. 1) and in plasma (Exp. 2) were reduced in SMP and SMPIG. The piglets positive to the adhesion of the used E. coli strain to the intestinal brush borders had a significantly reduced growth (p<0.01) and a higher K88-specific IgA titer in plasma, in comparison with negative ones. This effect was independent of the diet. The data show the relevance of spray dried plasma sources and particularly of SP with standardized level of immunoglobulins for the feeding of early-weaned at the risk of infection by enterotoxigenic bacteria.

Interaction between odontoblast and bio-calcium phosphate cement reinforced with chitosan (치아모세포와 키토산으로 강화된 생체 적합 칼슘인산시멘트와의 상호작용)

  • Chun, Byung-Do;Kim, Sung-Won;Lee, Sung-Tak;Kim, Tae-Hoon;Lee, Jung-Han;Kim, Gyoo-Cheon;Kim, Yong-Deok;Kim, Uk-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.415-420
    • /
    • 2011
  • Purpose: Calcium phosphate cement (CPC) is one of many useful materials for restoring tooth defects, periodontium and maxillofacial area. Chitosan is a biodegradable material that has been shown to promote the growth and differentiation of osteoblasts in culture. This study examined the interaction between odontoblasts and bio-calcium phosphate cement reinforced with chitosan. Materials and Methods: $5{\times}10^3$ odontoblastic cells were seeded into each well. Various concentrations of bio-calcium phosphate cement reinforced with chitosan (10, 20, 50, 100, 200, 500 ${\mu}g$/ml, 1, 2, 4 mg/ml) were diluted and added to the wells. The well was incubated for 24 h, 48 h and 72 h. After incubation, the number of cells was assessed to determine the cell viability. A cytokinesis-block micronucleus assay and chromosomal aberration test were carried out to estimate the extent of chromosomal abnormalities. Microscopic photographs and RT-PCR were performed to examine the adhesion potential of bio-calcium phosphate cement reinforced with chitosan. Results: Bio-CPC-reinforced chitosan did not show significant cytotoxicity. The number of damaged chromosomes in the cells treated with Bio-CPC-reinforced chitosan was similar to that in the control cells. There was no significant increase in the number of chromosomal aberrations in the Bio-CPC reinforced chitosan exposed cells. Microscopic photographs and RT-PCR confirmed the adhesive potential of bio-CPC reinforced chitosan to odontoblasts. Conclusion: Bio-CPC-reinforced chitosan did not affect the odontoblastic cell viability, and had no significant cytotoxic effect. Bio-CPC-reinforced chitosan showed adhesive potential to odontoblasts. These results are expected form the basis of future studies on the effectiveness of dental restorative materials in Bio-CPC reinforced with chitosan.

Myocardial Protection by Recombinant Soluble P-selectin Glyco-protein Ligand-1: Suppression of Neutrophil and Platelet Interaction Following Ischemia and Reperfusion

  • Ham, Sang-Soo;Jang, Yoon-Young;Song, Jin-Ho;Lee, Hyang-Mi;Kim, Kwang-Joon;Hong, Jun-Sik;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.515-523
    • /
    • 2000
  • Polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia/reperfusion (MI/R) injury. Moreover, platelets are also important blood cells that can aggravate myocardial ischemic injury. This study was designed to test the effects of PMNs and platelets separately and together in provoking cardiac dysfunction in isolated perfused rat hearts following ischemia and reperfusion. Additional control rat hearts were perfused with $75{\times}10^6$ PMNs, with $75{\times}10^6$ platelets, or with $75{\times}10^6\;PMNs+75{\times}10^6$ platelets over a five minute perfusion followed by a 75 min observation period. No significant reduction in coronary flow (CF), left ventricular developed pressure (LVDP), or the first derivative of LVDP (dP/dt max) was observed at the end of the observation period in any non-ischemic group. Similarly, global ischemia (I) for 20 min followed by 45 minutes of reperfusion (R) produced no sustained effects on the final recovery of any of these parameters in any group of hearts perfused in the absence of blood cells. However, I/R hearts perfused with either PMNs or platelets alone exhibited decreases in these variables of $5{\sim}10%$ (p<0.05 from control). Furthermore, I/R hearts perfused with both PMNs and platelets exhibited decreases of 50 to 60% in all measurements of cardiac function (p<0.01). These dual cell perfused I/R hearts also exhibited marked increases in cardiac myeloperoxidase (MPO) activity indicating a significant PMN infiltration, and enhanced P-selectin expression on the coronary microvascular endothelium. All cardiaodynamic effects as well as PMN accumulation and P-selectin expression were markedly attenuated by a recombinant soluble PSGL-1 which inhibits selectin mediated cell adhesion. These results provide evidence that platelets and PMNs act synergistically in provoking post-reperfusion cardiac dysfunction, and that this may be largely due to cell to cell interactions mediated by P-selectin. These results also demonstrate that a recombinant soluble PSGL-1 reduces myocardial reperfusion injury by platelet and PMNs interaction.

  • PDF