• 제목/요약/키워드: Adherens junction

검색결과 12건 처리시간 0.021초

LIMK1/2 are required for actin filament and cell junction assembly in porcine embryos developing in vitro

  • Kwon, Jeongwoo;Seong, Min-Jung;Piao, Xuanjing;Jo, Yu-Jin;Kim, Nam-Hyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1579-1589
    • /
    • 2020
  • Objective: This study was conducted to investigate the roles of LIM kinases (LIMK1 and LIMK2) during porcine early embryo development. We checked the mRNA expression patterns and localization of LIMK1/2 to evaluate their characterization. We further explored the function of LIMK1/2 in developmental competence and their relationship between actin assembly and cell junction integrity, specifically during the first cleavage and compaction. Methods: Pig ovaries were transferred from a local slaughterhouse within 1 h and cumulus oocyte complexes (COCs) were collected. COCs were matured in in vitro maturation medium in a CO2 incubator. Metaphase II oocytes were activated using an Electro Cell Manipulator 2001 and microinjected to insert LIMK1/2 dsRNA into the cytoplasm. To confirm the roles of LIMK1/2 during compaction and subsequent blastocyst formation, we employed a LIMK inhibitor (LIMKi3). Results: LIMK1/2 was localized in cytoplasm in embryos and co-localized with actin in cell-to-cell boundaries after the morula stage. LIMK1/2 knockdown using LIMK1/2 dsRNA significantly decreased the cleavage rate, compared to the control group. Protein levels of E-cadherin and β-catenin, present in adherens junctions, were reduced at the cell-to-cell boundaries in the LIMK1/2 knockdown embryos. Embryos treated with LIMKi3 at the morula stage failed to undergo compaction and could not develop into blastocysts. Actin intensity at the cortical region was considerably reduced in LIMKi3-treated embryos. LIMKi3-induced decrease in cortical actin levels was attributed to the disruption of adherens junction and tight junction assembly. Phosphorylation of cofilin was also reduced in LIMKi3-treated embryos. Conclusion: The above results suggest that LIMK1/2 is crucial for cleavage and compaction through regulation of actin organization and cell junction assembly.

Vascular Endothelial Cadherin-mediated Cell-cell Adhesion Regulated by a Small GTPase, Rap1

  • Fukuhra, Shigetomo;Sakurai, Atsuko;Yamagishi, Akiko;Sako, Keisuke;Mochizuki, Naoki
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.132-139
    • /
    • 2006
  • Vascular endothelial cadherin (VE-cadherin), which belongs to the classical cadherin family, is localized at adherens junctions exclusively in vascular endothelial cells. Biochemical and biomechanical cues regulate the VE-cadherin adhesive potential by triggering the intracellular signals. VE-cadherin-mediated cell adhesion is required for cell survival and endothelial cell deadhesion is required for vascular development. It is therefore crucial to understand how VE-cadherin-based cell adhesion is controlled. This review summarizes the inter-endothelial cell adhesions and introduces our recent advance in Rap1-regulated VE-cadherin adhesion. A further analysis of the VE-cadherin recycling system will aid the understanding of cell adhesion/deadhesion mechanisms mediated by VE-cadherin in response to extracellular stimuli during development and angiogenesis.

Association of the ubiquitin specific peptidase 9X -linked and Afadin expression patterns with sexual maturation in boar testis

  • Baek, Sun-Young;Lee, Seung-Hoon;Kim, Youngshin;Hong, Joon-Ki;Cho, Eunseok;Ha, Seungmin;Kim, Kyungwoon;Sa, Soojin;Chung, Hakjae
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.977-983
    • /
    • 2021
  • Closely correlated expression patterns between ubiquitin specific peptidase 9X-linked (USP9X) and adherens junction formation factor (Afadin) in mouse testis development suggests that Usp9x regulates the deubiquitination of Af-6 (also known as Afadin, AFDN), and subsequently, the cell adhesion dynamics during gametogenesis. However, this relationship has not yet been tested in other domestic animals. The study was examined the temporal and spatial expression patterns of porcine USP9X and AFDN from the pre-pubertal to adult stages using real time-PCR and immunohistochemistry. Furthermore, we detected the transcripts of USP9X and AFDN in the testis of 1-, 6- and 12-months old boar, respectively. USP9X and AFDN were found to have similar expressions patterns, with basal expression after 1 month followed by a significant up-regulation from 6 months (puberty) onwards. In addition, neither the AFDN or USP9X proteins were detected in spermatogenic cells but they were expressed in the leydig cells and sertoli cells. USP9X was detected around the basal lamina during pre-puberty, and predominantly expressed in the leydig cells at puberty. Finally, in adult testis, USP9X was increased at the sertoli cell-cell interface and the sertoli cell-spermatid interface. In summary, closely correlated expression patterns between USP9X and AFDN in boar testis supports the previous findings in mice. Furthermore, the junction connections between the sertoli cells may be regulated by the ubiquitination process mediated via USP9X.

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

  • Jiao, Zhou-Yang;Wu, Jing;Liu, Chao;Wen, Bing;Zhao, Wen-Zeng;Du, Xin-Ling
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.552-557
    • /
    • 2014
  • The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and ${\beta}$-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and ${\beta}$-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase $C{\alpha}$ ($PKC{\alpha}$). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation.

Fine structure of the intercalated disc and cardiac junctions in the black widow spider Latrodectus mactans

  • Yan Sun;Seung-Min Lee;Bon-Jin Ku;Myung-Jin Moon
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.20.1-20.9
    • /
    • 2020
  • Arthropods have an open circulatory system with a simple tubular heart, so it has been estimated that the contractile pumping structure of the cardiac muscle will be less efficient than that of vertebrates. Nevertheless, certain arthropods are known to have far superior properties and characteristics than vertebrates, so we investigated the fine structural features of intercalated discs and cardiac junctions of cardiac muscle cells in the black widow spider Latrodectus mactans. Characteristically, the spider cardiac muscle has typical striated features and represents a functional syncytium that supports multiple connections to adjacent cells by intercalated discs. Histologically, the boundary lamina of each sarcolemma connects to the basement membrane to form an elastic sheath, and the extracellular matrix allows the cells to be anchored to other tissues. Since the intercalated disc is also part of sarcolemma, it contains gap junctions for depolarization and desmosomes that keep the fibers together during cardiac muscle contraction. Furthermore, fascia adherens and macula adherens (desmosomes) were also identified as cell junctions in both sarcolemma and intercalated discs. To enable the coordinated heartbeat of the cardiac muscle, the muscle fibers have neuronal innervations by multiple axons from the motor ganglion.

형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징 (Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor)

  • 장윤관;서정수;석명은;김태진
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.366-372
    • /
    • 2021
  • 캐드헤린-카테닌 복합체는 세포의 부착 접합부에서 힘의 전달에 중요한 역할을 하는 것으로 생각된다. 그러나 기계적 힘 신호를 시각화 하고 감지하는 적절한 도구의 부재로, 캐드헤린-카테닌 복합체가 세포 간 접합에서 힘 전달을 조절하는 기본 메커니즘은 아직 파악하기가 어렵다. 본 연구에서는 형광공명에너지전이를 기반으로 설계된 알파카테닌 센서를 사용하여 캐드헤린에 의해 매개되는 힘 전달을 시각화 하였다. 이러한 결과는 알파카테닌이 세포-세포 접합부에서 캐드헤린 매개 기계적에너지변환(mechanotransduction) 경로의 핵심적인 힘 트랜스듀서(force transducer) 임을 보여준다. 본 연구는 향후 기계적 힘의 세포-세포 상호간의 의사소통에 미치는 영향과 생리학적/병리학적 현상과의 관계를 연구하는 데 중요한 이해를 제공할 것이라 본다.

Clinical Significance of CLDN18.2 Expression in Metastatic Diffuse-Type Gastric Cancer

  • Kim, Seo Ree;Shin, Kabsoo;Park, Jae Myung;Lee, Han Hong;Song, Kyo Yong;Lee, Sung Hak;Kim, Bohyun;Kim, Sang-Yeob;Seo, Junyoung;Kim, Jeong-Oh;Roh, Sang-Young;Kim, In-Ho
    • Journal of Gastric Cancer
    • /
    • 제20권4호
    • /
    • pp.408-420
    • /
    • 2020
  • Purpose: Isoform 2 of tight junction protein claudin-18 (CLDN18.2) is a potential target for gastric cancer treatment. A treatment targeting CLDN18.2 has shown promising results in gastric cancer. We investigated the clinical significance of CLDN18.2 and other cell-adherens junction molecules (Rho GTPase-activating protein [RhoGAP] and E-cadherin) in metastatic diffuse-type gastric cancer (mDGC). Materials and Methods: We evaluated CLDN18.2, RhoGAP, and E-cadherin expression using two-plex immunofluorescence and quantitative data analysis of H-scores of 77 consecutive mDGC patients who received first-line platinum-based chemotherapy between March 2015 and February 2017. Results: CLDN18.2 and E-cadherin expression was significantly lower in patients with peritoneal metastasis (PM) than those without PM at the time of diagnosis (P=0.010 and 0.013, respectively), whereas it was significantly higher in patients who never developed PM from diagnosis to death than in those who did (P=0.001 and 0.003, respectively). Meanwhile, CLDN18.2 and E-cadherin expression levels were significantly higher in patients with bone metastasis than in those without bone metastasis (P=0.010 and 0.001, respectively). Moreover, we identified a positive correlation between the expression of CLDN18.2 and E-cadherin (P<0.001), RhoGAP and CLDN18.2 (P=0.004), and RhoGAP and E-cadherin (P=0.001). Conversely, CLDN18.2, RhoGAP, and E-cadherin expression was not associated with chemotherapy response and survival. Conclusions: CLDN18.2 expression was reduced in patients with PM but significantly intact in those with bone metastasis. Furthermore, CLDN18.2 expression was positively correlated with other adherens junction molecules, which is clinically associated with mDGC and PM pathogenesis.

인태아 방실결절의 발육에 관한 전자현미경적 연구 (Ultrastructural Study on the Development of the Atrioventricular Node of the Human Fetal Heart)

  • 박종철;박성식;윤재룡
    • Applied Microscopy
    • /
    • 제28권1호
    • /
    • pp.1-19
    • /
    • 1998
  • Ultrastructural study of the development of the atrioventricular (AV) node was studied by electron microscopy in human fetus ranging from 30 mm to 260 mm crown rump length, and compared with human adult. By 30 mm fetus, the right AV nodal primordium was located below the attachment of the right venous valve. The left AV nodal primordium was observed below the attachment of septum primum. The cytoplasm of the nodal primordia contained few mitochondria, and myofibrils. These cells were apposed to each other with occasional desmosomes. In 40 mm fetus, the AV node cells were poorly organized myofibrils, while working myocardial cells were well organized myofibrils with sarcomere. At 70 mm fetus, intercalated discs were developed in the working myocardial cells. At 100 mm fetus, the nodal cells contained a relatively clear cytoplasm with a few groups of myofibrils and mitochondria. By $140\sim200$ mm fetuses, the nodal cells were an increasing number of myofibrils and mitochondria and these were scattered throughout the cytoplasm. At 260 mm fetus, the nodal cells were small and contained a clear cytoplasm with sparse and poorly organized myofibrils and mitochondria. All major ultrastructural features which characterize the adult AV nodal cells were found in this stage. The working myocardial cells were larger and had a more compact cytoarchitecture than nodal cells. Zonula adherens or fasciae adherens type junction were not found between nodal cells, but they frequently observed between nodal and working myocardial cells.

  • PDF

Lipoteichoic Acid Isolated from Staphylococcus aureus Induces Both Epithelial-Mesenchymal Transition and Wound Healing in HaCaT Cells

  • Kim, Seongjae;Kim, Hyeoung-Eun;Kang, Boyeon;Lee, Youn-Woo;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1820-1826
    • /
    • 2017
  • Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-${\kappa}B$ was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.

Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata

  • Yan Sun;Hyo-Jeong Kim;Myung-Jin Moon
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.9.1-9.8
    • /
    • 2020
  • The fine structural characteristics of cardiac muscle cells and its myofibril organization in the orb web spider N. clavata were examined by transmission electron microscopy. Although myofibril striations are not remarkable as those of skeletal muscles, muscle fibers contain multiple myofibrils, abundant mitochondria, extensive sarcoplasmic reticulum and transverse tubules (T-tubules). Myofibrils are divided into distinct sarcomeres defined by Z-lines with average length of 2.0 ㎛, but the distinction between the A-band and the I-bands is not clear due to uniform striations over the length of the sarcomeres. Dyadic junction which consisted of a single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum is found mainly at the A-I level of sarcomere. Each cell is arranged to form multiple connections with neighboring cells through the intercalated discs. These specialized junctions include three types of intercellular junctions: gap junctions, fascia adherens and desmosomes for heart function. Our transmission electron microscopy (TEM) observations clearly show that spider's cardiac muscle contraction is controlled by neurogenic rather than myogenic mechanism since each cardiac muscle fiber is innervated by a branch of motor neuron through neuromuscular junctions.