• Title/Summary/Keyword: Adenylate cyclase

Search Result 109, Processing Time 0.029 seconds

The Action Mechanism of several Ginsenosides in their Regulatory Action on the ACtivities of Adenylate Cyclase and Guanylate Cyclase (몇가지 진세노시드들의 아데닐산 고리화 효소와 구아닐산 고리화 효소의 활동성들에 대한 조절작용에 있어서의 작용 메카니즘)

  • 서기림;문종건
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 1983
  • The effects of the five ginsenosides on the activities of particulate adenylate cyclase and particulate guanylate cylase of rat brain have been studied. The range of concentrations of ginsenosides were between 10$\mu\textrm{g}$ and 500$\mu\textrm{g}$ per 500${mu}ell$ reaction mixture, Also, the effects of three ginsenosides on the activity of soluble guanylate cylace have been studied in the same range of concentrations as in particulate adenylate cyclase. Only ginsenoside Re has shown the reciprocal feeects when tested with particulated adenylate cyclase and particulate guanylated cyclase. Regulatory action of the several mononucleotides on the activities of adenylate cyclase and guanylate cyclase was examined. Ginsenoside Rd-inhibited adenylate cyclase was activated in great extent by the addition of increasing amount of GMP. On the other hand, ginsenoside Rc-activated guanylate cyclase was inhibited by the addition of increasing amount of AMP and GMP. The fact that the stimulatory action of GMP is observed only with particulated adenylate cyclase but not with soluble suanylate cyclase suggests that the action is membrane-related one. The competitive action was observed between ginsenoside Rb2 and dopamine in their binding to the receptors. This result is clear-cut evidence that the ginsenoside Rb2 binds specifically to $\beta$-adrenergic receptors.

  • PDF

Effects of Adenylate Cyclase, Guanylate Cyclase and KATP Channel Blockade on the Cerebral Blood Flow Response Induced by Adenosine A2B Receptor Agonist in the Rats

  • Youn, Doo-Sang;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine A$_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase, guanylate cyclase and potassium channel. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine A$_{2B}$ receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 4 umol/I) increased cerebral blood flow. This effect of NECA (4 umol/I) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12,330 (20 umol/I). But effect of NECA (4 umol/I) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83,583 (10 umol/I) and pretreatment with ATP-sensitive potassium channel inhibitor, glipizide (5 umol/I). These results suggest that adenosine A$_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine A$_{2B}$ receptor is mediated via the activation of guanylate cyclase and ATP-sensitive potassium channel in the cerebral cortex of the rats.

Effects of Hydrochlorothiazide on the Renal Cyclic Nucleotides Level (Hydrochlorothiazide가 신장의 Cyclic Nucleotides 함량에 미치는 영향)

  • Lee, Seok-Yong;Koh, Taek-Lip;Lee, Woo-Young;Lee, Sang-Bok;Cho, Kyu-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.128-134
    • /
    • 1986
  • To determine the relationship between hydrochlorothiazide-induced diuretic action and cyclic nucleotides, the effects of hydrochlorothiazide (5 mg/kg, i.v.) on the renal tissue level of cyclic nucleotides and the renal adenylate cyclase and guanylate cyclase activity were investigated. Hydrochlorothiazide elecitied the maximal diuretic effect between 10 and 20 min after the injection of drug. The increased urine flow and urinary electrolytes excretion returned to the control levels 60 min after the injection of drug. 5 and 15 min after drug administration the cAMP level of renal tissue was significantly decreased, but 60 min after the cAMP level was not different from the control level. The cGMP level of renal tissue was not affected by hydrocholorothiazide. Hydrochlorothiazide $(5\;{\times};10^{-4}\;M)$ inhibited the renal adenylate cyclase but not affected the renal guanylate cyclase. These results suggest that cAMP may be involved in the renal action mechanism of hydrochlorothiazide and the involvement of cGMP is uncertain.

  • PDF

The Regulatory Mechanism of Cerebral Blood How of Adenosine A2 Receptor Agonist in the Rats

  • Kang, Hyung-Kil;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.68-73
    • /
    • 2004
  • This study was performed to investigate the regulatory mechanism of cerebral blood How of adenosine $A_2$ receptor agonist in the rats, and to define whether its mechanism is mediated by nitric oxide (NO), adenylate cyclase and guanylate cyclase. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebal cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine $A_2$ receptor agonist [5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA; 4 umol/l)] increased cerebral blood flow. This effect of CPCA (4 umol/l) was blocked by pretreatment with NO synthase inhibitor [$N^G$-nitro-L-argine methylester (L-NAME; 140 umol/l)] and adenylate cyclase inhibitor [MDL-12,330 (20 umol/l)]. But the effect of CPCA (4 umol/l) was not blocked by pretreatment with guanylate cyclase inhibitor [LY-83,583 (10 umol/l)]. These results suggest that adenosine $A_2$ receptor increases cerebral blood How. It seems that this action of adenosine $A_2$ receptor is mediated via the NO and the activation of adenylate cyclase in the cerebral cortex of the rats.

A study on the Influence of Ginseng Components On cAMP-cGMP Regulation Mechanism (cAMP-cGMP 조절 메카니즘에 미치는 인삼 성분의 영향에 관한 연구)

  • 서기림;고문주
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.95-101
    • /
    • 1983
  • The effect of ginsenosides on the adenylate cyclase and guanylate cyclase of rat brain has been studied. We have found that Rbl, Rc and one unknown ginsenoside (probably Ra) exerted reciprocal effects on adenylate cyclase and guanylate cyclase. This dual effect of ginsenosides leads us to speculate that some ginsenosides may act as regulatory agents and modulate the activities of these two enzyme systems.

  • PDF

Effects of Cyclic Nucleotides on the Cerebral Blood Row Response Induced by Adenosine A2B Receptor Agonist in the Rats

  • Kim, Hyun-Seung;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.108-113
    • /
    • 2004
  • This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine $A_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase and guanylate cyclase. in pentobarbital-anesthetized, pentobrabital-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood How from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine $A_{2B}$ receptor agonist, 5'-N-ethylcar-boxamidoadenosine (NECA; 4 umol/l) increased cerebral blood flow. This effect of NECA (4 umol/l) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12330 (20 umol/l). But effect of NECA (4 umol/l) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83383 (10 umol/l). These results suggest that adenosine $A_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine $A_{2B}$ receptor is mediated via the activation of guanylate cyclase in the cerebral cortex of the rats.

Control Mechanisms of Ovulation by Pituitary Adenylate Cyclase-Activating Polypeptide (Pituitary Adenylate Cyclase-Activating Polypeptide에 의한 배란 조절에 관한 연구)

  • Lee, Yu-Il;Kim, Hyoung-Choon;Kim, Mi-Young;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.101-111
    • /
    • 2005
  • 배 경: Pituitary adenylate cyclase-activating polypeptide (PACAP)은 양의 시상하부에서 추출된 신경펩타이드 호르몬으로 난소에도 존재하여 배양된 과립막 세포에서 스테로이드합성과 cyclic AMP 형성을 촉진함이 보고되었다. 목 적: 흰쥐 난소를 실험 모델로 사용하여 배란시 황체화호르몬 (luteinizing hormone; LH)에 의해 유도된 PACAP과 PACAP 수용체의 유전자 발현양상과 신호 전달경로를 규명하고자 하였다. 재료 및 방법: 미성숙 흰쥐의 배란전 난포를 체외 배양하면서 LH로 처리하고 PACAP 및 PACAP수용체의 유전자 발현을 보기 위해서는 Northern blot 분석과 in situ hybridization (ISH)을, 그리고 단백질 수준의 PACAP 검색을 위해서는 enzyme linked immunosorbent assay (ELISA) 분석을 이용하였다. 결 과: LH 처리 후 Northern blot상의 PACAP 유전자 발현은 6~9시간에 일시적으로 최고치에 도달하였으며 ISH로 보아 과립막 세포에서 발현됨을 알 수 있었다. ELISA 분석 상 PACAP 단백질도 LH처리 후 6~12시간에 최고치를 나타내었으며, PACAP 수용체 mRNA 역시 3~9시간에 최고치로 과립막 세포에서 발현되었다. Adenylate cyclase (AC) 억제제인 MDL12330A 처리시 LH로 발현된 PACAP mRNA가 감소되며, AC의 활성제인 forskolin 처리에는 LH시와 유사한 PACAP mRNA의 발현양상을 나타내었다. 그러나 protein kinase C (PKC)의 억제제인 chelerythrine과 2-0-tetradecanolphorbol-13-acetate (TPA) 처리로는 PACAP 의 유전자 발현에 영향을 주지 못하였다. 5-lipoxygenase의 억제제인 MK886이나 nordihydroguaiaretic acid (NDGA)로 처리한 결과 LH로 유도된 PACAP 유전자의 발현이 감소되었으나, cyclooxygenase의 억제제인 indomethacin은 별로 영향을 주지 못하였다. MEK와 p38의 억제제인 PD98059와 SB203580도 LH로 촉진 된 PACAP의 유전자 발현을 농도 의존적으로 억제하였다. 결 론 : 배란전 난포에서 PACAP과 PACAP 수용체의 유전자 발현은 모두 LH의 폭발적 분비에 의해 유도되어 일시적으로 과립막 세포에서 나타나 배란을 위한 국소적인 조절 작용을 할 것으로 추정되며, LH로 촉진된 PACAP 유전자 발현을 위한 신호전달은 cAMP-PKA, lipoxygenase 및 MAP kinase 경로를 통하는 것으로 사료된다.

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases

  • Lee, Eun Hye;Seo, Su Ryeon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.369-375
    • /
    • 2014
  • Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via three major receptors (PAC1, VPAC1, and VPAC2). Recent studies have shown a neuroprotective role of PACAP using in vitro and in vivo models. In this review, we briefly summarize the current findings on the neurotrophic and neuroprotective effects of PACAP in different brain injury models, such as cerebral ischemia, Parkinson's disease (PD), and Alzheimer's disease (AD). This review will provide information for the future development of therapeutic strategies in treatment of these neurodegenerative diseases.

Cell Biological Studies on the Mechanism of Development and Differentiation Ⅷ 2. Effects of Peptide on cAMP Level in Corn Endosperm (생체발생 및 문화기구의 세포생물학적 연구 Ⅷ 2. 옥수수 배젖에서 Peptide가 cAMP Level에 미치는 영향)

  • Young Dong Cho
    • Journal of Plant Biology
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 1984
  • Activities of corn endosperm adenylate cyclase and phosphodiesterase were found right after germination, and phosphodiesterase activity was shown to increase steadily. Protease activity was also found. Corn peptide fraction purified by using Sephadex G-25 column was shown to enhance corn phosphodiesterase activity buy inhibit bovine phosphodiesterase activity. And the fraction inhibits corn adenylate cyclase activity. Trypsintreated peptide fraction was shown to enhance phosphodiesterase activity 80% compared to that of native peptide fraction. However, in case of DNase phosphodiesterase was shown to be innocuous. According to cumulative results, it is more likely that peptide fraction produced by protease inhibits adenylate cyclase activity and enhance phosphodiesterase, decreasing cAMP level.

  • PDF

Effects of Forskolin and Cholera Toxin on the Maturation of Mouse Oocytes In Vitro (Forskolin과 Cholera Toxin이 배양중인 생쥐 난자의 성숙에 미치는 영향)

  • 김찬성;조완규
    • The Korean Journal of Zoology
    • /
    • v.29 no.3
    • /
    • pp.181-189
    • /
    • 1986
  • The present study was undertaken to investigate whether the known adenylate cyclase activators, forskolin and cholera toxin, would affect the germinal vesicle breakdown (GVBD) and the production of cAMP in mouse oocytes in vitro. To do this, in vitro oocyte culture method and adenylate cyclase assay were employed. In response to different concentrations of forskolin (20 to 80 $\\mu$g/ml) added to a culture medium, the percentage of GVBD significantly decreased (56 to 31%) in a dose-dependent manner as compared to that of control (63%). This inhibitory phenomenon by forskolin was reversible since the rate of GVBD was returned to the control level when the oocytes were transferred to a control medium following exposure to forskolin (80 $\\mu$g/ml). Treatment of cholera toxin (10 to 1, 000 ng/ml) was, however, ineffective in suppressing GVBD. When forskolin (10 to 80 $\\mu$g/ml) was added to the mouse oocyte extracts, cAMP production significantly increased by 5 to 18 fold, whereas cholera toxin (10 to 1, 000 ng/ml) was no longer effective. In addition, treatment of guanidyl-imidodiphosphate (GppNHp, 100 $\\mu$M), which is an activator of the regulatory unit of adenylate cycleas, with forskolin did not exhibit any changes in cAMP production as compared to that induced by forskolin alone. Neither cholera toxin nor cholera toxin plus GppNHp (100 $\\mu$M) exhibited any differences in mouse oocytes. From the above results, the suppression of GVBD by forskolin may be mediated by a high level of intracellular cAMP in mouse oocytes. It appears that the changes in intracellular cAMP level may an important role in the mouse oocyte maturation.

  • PDF