Browse > Article

Effects of Adenylate Cyclase, Guanylate Cyclase and KATP Channel Blockade on the Cerebral Blood Flow Response Induced by Adenosine A2B Receptor Agonist in the Rats  

Youn, Doo-Sang (Department of Pharmacology, College of Medicine, Hanyang University)
Shin, In-Chul (Department of Pharmacology, College of Medicine, Hanyang University)
Publication Information
Biomolecules & Therapeutics / v.13, no.1, 2005 , pp. 35-40 More about this Journal
Abstract
This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine A$_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase, guanylate cyclase and potassium channel. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine A$_{2B}$ receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 4 umol/I) increased cerebral blood flow. This effect of NECA (4 umol/I) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12,330 (20 umol/I). But effect of NECA (4 umol/I) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83,583 (10 umol/I) and pretreatment with ATP-sensitive potassium channel inhibitor, glipizide (5 umol/I). These results suggest that adenosine A$_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine A$_{2B}$ receptor is mediated via the activation of guanylate cyclase and ATP-sensitive potassium channel in the cerebral cortex of the rats.
Keywords
5'-N-ethylcarboxamidoadenosine; cerebral blood flow; adenylate cyclase; guanylate cyclase; ATP-sensitive potassium channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hong, K. W., Shin, H. K., Kim, H. H., Choi, J. M., Rhim, B. Y. and Lee W. S. (1999). Metabolism of exogenous cAMP to adenosine and its role for vasodilation during cerebral autoregulation in rat pial artery. Am. J. Heart. Circ. Physiol. 276, H376-H382   DOI
2 Hong, K. W., Yoo, S. E., Yu, S. S., Lee, J. Y. and Rhim, B. Y. (1996). Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am. J. Heart. Circ. Physiol. 270, H317-H323   DOI
3 Hyman, A. L., Kadowitz, P. J. and Lippton, H. L. (1989). Methylene blue selectively inhibits pulmonary vasodilator responses in cats. J. Appl. Physiol. 66, 1513-1517   DOI
4 Jiang, H., Colbran, J. L., Francis, S. H. and Corbin, J. D. (1992). Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J. Biol. Chem. 267, 1015-1019
5 Liang, B. T. and Haltiwanger, B. (1995). Adenosine $A_{2a}$ and $A_{2b}$ receptors in cultured fetal chick heart cells. High-and lowaffinity coupling to stimulation of myocyte contractility and cAMP accumulation. Circ. Res. 76, 242-251   DOI   ScienceOn
6 Martin, P. L. (1992). Relative agonist potencies of C2-substituted analogs of adenosine: evidence for adenosine $A_{2B}$ receptors in the guinea pig aorta. Eur. J. Pharmacol. 216, 235-242   DOI   ScienceOn
7 Martin, P. L. and Potts, A. A. (1994). The endothelium of the rat renal artery plays an obligatory role in $A_2$ adenosine receptor-mediated relaxation induced by 5'-N-ethylcarboxamidoadenosine and $N^6$-cyclopentyladenosine. J. Pharmacol. Exp. Ther. 270, 893-899
8 Mian, R. and Marshall, J. M. (1991). The role of adenosine in dilator responses induced in arterioles and venules of rat skeletal muscle by systemic hypoxia. J. Physiol. 443, 499-511   DOI
9 Ngai, A. C. and Winn, H. R. (1993). Effects of adenosine and its analogues on isolated arterioles: extraluminal and intraluminal application. Circ. Res. 73, 448-457   DOI
10 Stehle, J. H., Rivkees, S. A., Lee, J. J., Weaver, D. R., Deeds, J. D. and Reppert, S. M. (1992). Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol. Endocrinol. 6, 384-393   DOI   ScienceOn
11 Stone, G. A., Jarvis, M. F., Sills, M. S., Weeks, B., Snowhill, E. W. and Williams, M. (1988). Species differences in high affinity adenosine $A_2$ binding sites in striatal membranes from mammalian brain. Drug Develop. Res. 15, 31-46   DOI
12 Strohmeier, G. R., Reppert, S. M., Lencer, W. I. and Madara, J. L. (1995). The $A_{2b}$ adenosine receptor mediates camp responses to adenosine receptor agonists in human intestinal epithelia. J. Biol. Chem. 270, 2387-2941   DOI   ScienceOn
13 Thomas, T. and Marshall, J. M. (1994). Interdependence of respiratory and cardiovascular changes induced by systemic hypoxia in the rat: the role of adenosine. J. Physiol. 480, 627-636   DOI
14 Trussel, L. O. and Jackson, M. B. (1985). Adenosine-axtivated potassium conductance in cultured striatal neurons. Proc. Natl Acad. Sci. USA. 82, 4857-4861
15 Van Calker, D., Muller, M. and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999-1005   DOI
16 Van Wylen, D. G. L., Park, T. S., Rubio, R. and Berne, R M. (1989). The effect of local infusion of adenosine and adenosine analogues on local cerebral blood flow. J. Cereb. Blood. Flow. Metab. 9, 556-562   DOI
17 Watts, A.E., Hicks, G. A and Henderson, G.(1995). Putative preand postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J. Neurosci. 15(4), 3065-3074
18 Hong, K. W., Pyo, K. M., Lee, W. S., Yu, S. S. and Rhim, B. Y. (1994). Pharmacological evidence that calcitonin-related peptide is implicated in cerebral autoregulation. Am. J. Heart. Circ. Physiol. 266, H11-H16   DOI
19 Zhou, H. L. and Torphy, T. J. (1991). Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. J. Pharmacol. Exp. Ther. 258, 972-978
20 Yoneyama, F., Yamada, H., Satoh, K. and Taira, N. (1992). Vasodepressor mechani of 2-(l-octynyl)-adenosine (YT-146), a selective adenosine $A_2$ receptor agonist, involve the opening of glibenclamide-sensitive $K^+$ channels. Eur. J. Pharmacol. 213, 199-204   DOI   ScienceOn
21 Shin, H., K., Shin, Y., W. and Hong, K., W. (2000). Role of adenosine $A_{2B}$ receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am. J. Physiol.-Heart and Circulatory Physiology 278, H339-H344   DOI
22 Olah, M. E. and Stiles, G. L. (1996). Adenosine receptor subtypes: characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 35, 581-606   DOI   ScienceOn
23 Nicoll, R. A. (1988). The coupling of neurotransmitter receptor to ion channels in the brain. Science 241, 545-551   DOI
24 Skinner, M. R. and Marshall, J. M. (1996). Studies on the roles of ATP, adenosine and nitric oxide in mediating muscle vasodilation induced in the rat by acute systemic hypoxia. J. Physiol. 495, 553-560   DOI
25 Coney, A. M. and Marshall, J. M. (1998). Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia. J. Physiol. 509, 507-518   DOI   ScienceOn
26 Webb, R. L., Sills, M. A., Chovan, J. P., Balwierczak, J. L. and Francis. J. E. (1992). CGS21680: a potent selective adenosine $A_2$ receptor agonist. Cardiovasc. Drug Rev. 10. 26-53.1   DOI
27 Winn, H. R., Rubio, R. and Berne, R. M. (1981). The role of adenosine in the regulation of cerebral blood flow. J. Cereb. Blood. Flow. Metab. 1, 239-244   DOI
28 Wysham, D. G., Brotherton, A. E. and Heistad, D. D. (1986). Effects of forskolin on cerebral blood flow : Implications for a role of adenylate cyclase. Stroke 17, 1299-1303   DOI   ScienceOn
29 Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A., Hartman, J. D., Hays, S. J. and Huang, C. C. (1987). Binding of the $A_1$-selective adenosine antagonist 8-cyclopentyl-1,3-diproxylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59-63
30 Choca, J. I., Proudfit, H. K. and Green, R. D. (1987). Identification of $A_1$ and $A_2$ adenosine receptors in the rat spinal cord. J. Pharmacal. Exp. Ther. 242, 905-910
31 Dirnagl, U., Lindauer, U. and Villringer, A. (1993). Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci. Lett. 149, 43-46   DOI   ScienceOn
32 Edvinsson, L. and Fredholm, B. B. (1983). Charaterization of adenosine receptors in isolated cerebral arteries of cat. Br. J. Pharmacol. 80, 631-637   DOI   ScienceOn
33 Fiebich, B. L., Biber, K., Gyufko, K., Berger, M., Bauer, J. and Van-Calker, D. (1996). Adenosine $A_{2b}$ receptors mediate an increase in interleukin(IL)- mRNA and IL-6 protein synthesis in human astroglioma cells. J. Neurochem. 66, 1426-1431   DOI
34 Fredholm, B. B., Abbrachio, M. P., Bumstock, G., Daly, J. W., Harden, T. K., Jacobson, K. A., Left, P. and Williams, M. (1994). Nomenclature and classification of purinoceptors. Pharmacol. Rev. 46, 143-156
35 Garthwaite, J., Charles S. L. and Chess-Williams R. (1988). EndotheliumA] derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385-388   DOI   ScienceOn
36 Gerber, U. and Gahwiler, B. H. (1994). $GABA_B$ and adenosine receptors mediate enhancement of the $K^+$ current, $I_{AHP}$by reducing adenylate cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360-2367   DOI