Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.7.086

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases  

Lee, Eun Hye (Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University)
Seo, Su Ryeon (Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University)
Publication Information
BMB Reports / v.47, no.7, 2014 , pp. 369-375 More about this Journal
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via three major receptors (PAC1, VPAC1, and VPAC2). Recent studies have shown a neuroprotective role of PACAP using in vitro and in vivo models. In this review, we briefly summarize the current findings on the neurotrophic and neuroprotective effects of PACAP in different brain injury models, such as cerebral ischemia, Parkinson's disease (PD), and Alzheimer's disease (AD). This review will provide information for the future development of therapeutic strategies in treatment of these neurodegenerative diseases.
Keywords
Alzheimer's disease (AD); Cerebral ischemia; Neurodegeneration; Parkinson's disease (PD); Pituitary adenylate cyclase-activating polypeptide (PACAP38); Traumatic brain injury (TBI);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Johanson, C., Stopa, E., Baird, A. and Sharma, H. (2011) Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J. Neural. Transm. 118, 115-133.   DOI   ScienceOn
2 Skoglosa, Y., Lewen, A., Takei, N., Hillered, L. and Lindholm, D. (1999) Regulation of pituitary adenylate cyclase activating polypeptide and its receptor type 1 after traumatic brain injury: comparison with brain-derived neurotrophic factor and the induction of neuronal cell death. Neuroscience 90, 235-247.   DOI   ScienceOn
3 Tamas, A., Reglodi, D., Farkas, O., Kovesdi, E., Pal, J., Povlishock, J.T., Schwarcz, A., Czeiter, E., Szanto, Z., Doczi, T., Buki, A. and Bukovics, P. (2012) Effect of PACAP in central and peripheral nerve injuries. Int. J. Mol. Sci. 13, 8430-8448.   DOI
4 Kovesdi, E., Tamas, A., Reglodi, D., Farkas, O., Pal, J., Toth, G., Bukovics, P., Doczi, T. and Buki, A. (2008) Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats. Neurotox. Res. 13, 71-78.   DOI   ScienceOn
5 Ziebell, J. M. and Morganti-Kossmann, M. C. (2010) Involvement of Pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 7, 22-30.   DOI   ScienceOn
6 Marklund, N., Bakshi, A., Castelbuono, D. J., Conte, V. and McIntosh, T. K. (2006) Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr. Pharm. Des. 12, 1645-1680.   DOI
7 Fang, K. M., Chen, J. K., Hung, S. C., Chen, M. C., Wu, Y. T., Wu, T. J., Lin, H. I., Chen, C. H., Cheng, H., Yang, C. S. and Tzeng, S. F. (2010) Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. PLoS One 5, e15299.   DOI   ScienceOn
8 Kim, D. H., Ko, I. G., Kim, B. K., Kim, T. W., Kim, S. E., Shin, M. S., Kim, C. J., Kim, H., Kim, K. M. and Baek, S. S. (2010) Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol. Behav. 101, 660-665.   DOI   ScienceOn
9 Reglodi, D., Kiss, P., Lubics, A. and Tamas, A. (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases In Vitro and In Vivo. Curr. Pharm. Des. 17, 962-972.   DOI   ScienceOn
10 Werner, C. and Engelhard, K. (2007) Pathophysiology of traumatic brain injury. Br. J. Anaesth 99, 4-9.   DOI   ScienceOn
11 Raghupathi, R. (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol. 14, 215-222.   DOI   ScienceOn
12 Uchida, D., Arimura, A., Somogyvari-Vigh A, Shioda, S. and Banks, W. A. (1996) Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res. 736, 280-286.   DOI   ScienceOn
13 Ohtaki, H., Nakamachi, T., Dohi, K., Aizawa, Y., Takaki, A., Hodoyama, K., Yofu, S., Hashimoto, H., Shintani, N., Baba, A., Kopf, M., Iwwakura, Y., Matsuda, K., Arimura, A. and Shioda, S. (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc. Natl. Acad. Sci. U. S. A. 103, 7488-7493.   DOI   ScienceOn
14 Dejda, A., Seaborn, T., Bourgault, S., Touzani, O., Fournier, A., Vaudry, H. and Vaudry, D. (2011) PACAP and a novel stable analog protect rat brain from ischemia: Insight into the mechanisms of action. Peptides. 32, 1207-1216.   DOI   ScienceOn
15 Banks, W. A., Uchida, D., Arimura, A., Somogyvari-Vigh, A. and Shioda, S. (1996) Transport of pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier and the prevention of ischemia-induced death of hippocampal neurons. Ann. N. Y. Acad. Sci. 805, 270-277; discussion 277-279.
16 Reglodi, D., Somogyvari-Vigh, A., Vigh, S., Kozicz, T. and Arimura, A. (2000) Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31, 1411-1417.   DOI   ScienceOn
17 Horvath, G., Reglodi, D., Opper, B., Brubel, R., Tamas, A., Kiss, P., Toth, G., Csernus, V., Matkovits, A. and Racz, B. (2010) Effects of PACAP on the oxidative stress-induced cell death in chicken pinealocytes is influenced by the phase of the circadian clock. Neurosci. Lett. 484, 148-152.   DOI   ScienceOn
18 Armstrong, B. D., Abad, C., Chhith, S., Cheung-Lau, G., Hajji, O. E., Nobuta, H. and Waschek, J. A. (2008) Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience 151, 63-73.   DOI   ScienceOn
19 Stetler, R. A., Gao, Y., Zukin, R. S., Vosler, P. S., Zhang, L., Zhang, F., Cao, G., Bennett, M. V. and Chen, J. (2010) Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A. 107, 3204-3209.   DOI   ScienceOn
20 Vaudry, D., Pamantung, T. F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., Beauvillain, J. C. and Gonzalez, B. J. (2002) PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur. J. Neurosci. 15, 1451-1460.   DOI   ScienceOn
21 Suk, K., Park, J. H. and Lee, W. H. (2004) Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res. 1026, 151-156.   DOI   ScienceOn
22 Bruns, J., Jr. and Hauser, W. A. (2003) The epidemiology of traumatic brain injury: a review. Epilepsia 44(Suppl 10), 2-10.
23 Dejda, A., Sokolowska, P. and Nowak, J. Z. (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol. Rep. 57, 307-320.
24 Shoge, K., Mishima, H. K., Saitoh, T., Ishihara, K., Tamura, Y., Shiomi, H. and Sasa, M. (1999) Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res. 839, 66-73.   DOI   ScienceOn
25 Vaudry, D., Gonzalez, B. J., Basille, M., Pamantung, T. F., Fontaine, M., Fournier, A. and Vaudry, H. (2000) The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc. Natl. Acad. Sci. U. S. A. 97, 13390-13395.   DOI   ScienceOn
26 Frechilla, D., Garcia-Osta, A., Palacios, S., Cenarruzabeitia, E. and Del Rio, J. (2001) BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 12, 919-923.   DOI   ScienceOn
27 Pugh, P. C. and Margiotta, J. F. (2006) PACAP support of neuronal survival requires MAPK- and activity-generated signals. Mol. Cell. Neurosci. 31, 586-595.   DOI   ScienceOn
28 Villalba, M., Bockaert, J. and Journot, L. (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J. Neurosci. 17, 83-90.
29 Falluel-Morel, A., Aubert, N., Vaudry, D., Basille, M., Fontaine, M., Fournier, A., Vaudry, H. and Gonzalez, B. J. (2004) Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J. Neurochem. 91, 1231-1243.   DOI   ScienceOn
30 Bhave, S. V. and Hoffman, P. L. (2004) Phosphatidylinositol 3'-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol. J. Neurochem. 88, 359-369.
31 Delgado, M. and Ganea, D. (2003) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J. 17, 1922-1924.
32 Arimura, A., Somogyvari-Vigh, A., Weill, C., Fiore, R. C., Tatsuno, I., Bay, V. and Brenneman, D. E. (1994) PACAP functions as a neurotrophic factor. Ann. N. Y. Acad. Sci. 739, 228-243.   DOI
33 Gottschall, P. E., Tatsuno, I. and Arimura, A. (1994) Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase activating polypeptide (PACAP). Brain Res. 637, 197-203.   DOI   ScienceOn
34 Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H. and Journot, L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170-175.   DOI   ScienceOn
35 Harmar, A. J. (2001) Family-B G-protein-coupled receptors. Genome Biol. 2, REVIEWS393.1-3013.10.
36 Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A. and Vaudry, H. (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol. Rev. 52, 269-324.
37 Hannibal, J. (2002) Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J. Comp. Neurol. 453, 389-417.   DOI   ScienceOn
38 Sundler, F., Ekblad, E., Hannibal, J., Moller, K., Zhang, Y. Z., Mulder, H., Elsas, T., Grunditz, T., Danielsen, N., Fahrenkrug, J. and Uddman, R. (1996) Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann. N. Y. Acad. Sci. 805, 410-426; discussion 427-428.
39 Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A. and Vaudry, H. (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78, 419-430.   DOI   ScienceOn
40 Morio, H., Tatsuno, I., Hirai, A., Tamura, Y. and Saito, Y. (1996) Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 741, 82-88.   DOI   ScienceOn
41 Chen, Y., Samal, B., Hamelink, C. R., Xiang, C. C., Chen, M., Vaudry, D., Brownstein, M. J., Hallenbeck, J. M. and Eiden, L. E. (2006) Neuroprotection by endogenous and exogenous PACAP following stroke. Regul. Pept. 137, 4-19.   DOI   ScienceOn
42 Tanaka, J., Koshimura, K., Murakami, Y., Sohmiya, M., Yanaihara, N. and Kato, Y. (1997) Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regul. Pept. 72, 1-8.   DOI   ScienceOn
43 Waschek, J. A. (2002) Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev. Neurosci. 24, 14-23.   DOI   ScienceOn
44 Waschek, J. A. (2013) VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br. J. Pharmacol. 169, 512-523.   DOI   ScienceOn
45 Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., Culler, M. D. and Coy, D. H. (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567-574.   DOI   ScienceOn
46 Hosoya, M., Onda, H., Ogi, K., Masuda, Y., Miyamoto, Y., Ohtaki, T., Okazaki, H., Arimura, A. and Fujino, M. (1993) Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem. Biophys. Res. Commun. 194, 133-143.   DOI   ScienceOn
47 Jankovic, J. (2008) Parkinson's disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368-376.   DOI   ScienceOn
48 Lauffer, J. M., Modlin, I. M. and Tang, L. H. (1999) Biological relevance of pituitary adenylate cyclase-activating polypeptide (PACAP) in the gastrointestinal tract. Regul. Pepti. 84, 1-12.   DOI   ScienceOn
49 Journot, L., Spengler, D., Pantaloni, C., Dumuis, A., Sebben, M. and Bockaert, J. (1994) The PACAP receptor: Generation by alternative splicing of functional diversity among G protein-coupled receptors in nerve cells. Semin. Cell Dev. Biol. 5, 263-272.
50 Buki, A., Okonkwo, D. O., Wang, K. K. and Povlishock, J. T. (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20, 2825-2834.
51 Gerlach, M. and Riederer, P. (1996) Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J. Neural. Transm. 103, 987-1041.   DOI
52 Kostrzewa, R. M. and Segura-Aguilar, J. (2002) Neurotoxicological and neuroprotective elements in Parkinson's disease. Neurotox. Res. 4, 83-86.   DOI
53 Masuo, Y., Matsumoto, Y., Tokito, F., Tsuda, M. and Fujino, M. (1993) Effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) on the spontaneous release of acetylcholine from the rat hippocampus by brain microdialysis. Brain Res. 611, 207-215.   DOI   ScienceOn
54 Deumens, R., Blokland, A. and Prickaerts, J. (2002) Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175, 303-317.   DOI   ScienceOn
55 Takei, N., Skoglosa, Y. and Lindholm, D. (1998) Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J. Neurosci. Res. 54, 698-706.   DOI
56 Reglodi, D., Lubics, A., Tamas, A., Szalontay, L. and Lengvari, I. (2004) Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease. Behav. Brain Res. 151, 303-312.   DOI   ScienceOn
57 Reglodi, D., Tamas, A., Lubics, A., Szalontay, L. and Lengvari, I. (2004) Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regul. Pept. 123, 85-94.   DOI   ScienceOn
58 Wang, G., Qi, C., Fan, G. H., Zhou, H. Y. and Chen, S. D. (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett. 579, 4005-4011.   DOI   ScienceOn
59 Brown, D., Tamas, A., Reglodi, D. and Tizabi, Y. (2013) PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease. J. Mol. Neurosci. 50, 600-607.   DOI   ScienceOn
60 von Bohlen und Halbach, O., Schober, A. and Krieglstein, K. (2004) Genes, proteins, and neurotoxins involved in Parkinson's disease. Prog. Neurobiol. 73, 151-177.   DOI   ScienceOn
61 Yang, S., Yang, J., Yang, Z., Chen, P., Fraser, A., Zhang, W., Pang, H., Gao, X., Wilson, B., Hong, J. S. and Block, M. L. (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J. Pharmacol. Exp. Ther. 319, 595-603.   DOI   ScienceOn
62 Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356.   DOI   ScienceOn
63 Przywara, D. A., Guo, X., Angelilli, M. L., Wakade, T. D. and Wakade, A. R. (1996) A non-cholinergic transmitter, pituitary adenylate cyclase-activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J. Biol. Chem. 271, 10545-10550.   DOI   ScienceOn
64 Ghzili, H., Grumolato, L., Thouennon, E., Tanguy, Y., Turquier, V., Vaudry, H. and Anouar, Y. (2008) Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol. 29, 128-141.   DOI   ScienceOn
65 Mustafa, T., Walsh, J., Grimaldi, M. and Eiden, L. E. (2010) PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca(2+) channels in PC12 cells. Cell Signal. 22, 1420-1426.   DOI   ScienceOn
66 Wang, G., Pan, J., Tan, Y. Y., Sun, X. K., Zhang, Y. F., Zhou, H. Y., Ren, R. J., Wang, X. J. and Chen, S. D. (2008) Neuroprotective effects of PACAP27 in mice model of Parkinson's disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides 42, 267-276.   DOI   ScienceOn
67 Deguil, J., Chavant, F., Lafay-Chebassier, C., Perault-Pochat, M. C., Fauconneau, B. and Pain, S. (2010) Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP parkinsonian mice. Neurotox. Res. 17, 142-155.   DOI
68 LaFerla, F. M., Green, K. N. and Oddo, S. (2007) Intracellular amyloid-beta in Alzheimer's disease. Nat. Rev. Neurosci. 8, 499-509.   DOI   ScienceOn
69 Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E., Postina, R., Van Leuven, F., Fahrenholz, F. and Kojro, E. (2011) Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 25, 3208-3218.   DOI   ScienceOn
70 Kojro, E., Postina, R., Buro, C., Meiringer, C., Gehrig-Burger, K. and Fahrenholz, F. (2006) The neuropeptide PACAP promotes the $\alpha$-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J. 20, 512-514.   DOI
71 Wu, Z. L., Ciallella, J. R., Flood, D. G., O'Kane, T. M., Bozyczko-Coyne, D. and Savage, M. J. (2006) Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol. Aging 27, 377-386.   DOI   ScienceOn
72 Strittmatter, W. J. and Roses, A. D. (1995) Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 92, 4725-4727.   DOI
73 Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setala, K., Walsh, A., Verstuyft, J. G., Rubin, E. M. and Breslow, J. L. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343-353.   DOI   ScienceOn
74 Gozes, I., Bachar, M., Bardea, A., Davidson, A., Rubinraut, S., Fridkin, M. and Giladi, E. (1997) Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implications for early treatment of Alzheimer's disease. J. Neurobiol. 33, 329-342.   DOI
75 Onoue, S., Endo, K., Ohshima, K., Yajima, T. and Kashimoto, K. (2002) The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23, 1471-1478.   DOI   ScienceOn
76 May, V., Lutz, E., MacKenzie, C., Schutz, K. C., Dozark, K. and Braas, K. M. (2010) Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival. J. Biol. Chem. 285, 9749-9761.   DOI   ScienceOn
77 Zhu, L., Tamvakopoulos, C., Xie, D., Dragovic, J., Shen, X., Fenyk-Melody, J. E., Schmidt, K., Bagchi, A., Griffin, P. R., Thornberry, N. A. and Sinha Roy, R. (2003) The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J. Biol. Chem. 278, 22418-22423.   DOI   ScienceOn
78 Bourgault, S., Vaudry, D., Botia, B., Couvineau, A., Laburthe, M., Vaudry, H. and Fournier, A. (2008) Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides 29, 919-932.   DOI   ScienceOn
79 Bourgault, S., Vaudry, D., Dejda, A., Doan, N. D., Vaudry, H. and Fournier, A. (2009) Pituitary adenylate cyclase-activating polypeptide: focus on structure-activity relationships of a neuroprotective Peptide. Curr. Med. Chem. 16, 4462-4480.   DOI   ScienceOn
80 Leker, R. R. and Shohami, E. (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Brain Res. Rev. 39, 55-73.   DOI   ScienceOn
81 Deguil, J., Jailloux, D., Page, G., Fauconneau, B., Houeto, J. L., Philippe, M., Muller, J. M. and Pain, S. (2007) Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in MPP+-induced alteration of translational control in Neuro-2a neuroblastoma cells. J. Neurosci. Res. 85, 2017-2025.   DOI   ScienceOn
82 Dogrukol-Ak, D., Kumar, V. B., Ryerse, J. S., Farr, S. A., Verma, S., Nonaka, N., Nakamachi, T., Ohtaki, H., Niehoff, M. L., Edwards, J. C., Shioda, S., Morley, J. E. and Banks, W. A. (2009) Isolation of peptide transport system-6 from brain endothelial cells: therapeutic effects with antisense inhibition in Alzheimer and stroke models. J. Cereb. Blood Flow Metab. 29, 411-422.   DOI   ScienceOn
83 Mao, S. S., Hua, R., Zhao, X. P., Qin, X., Sun, Z. Q., Zhang, Y., Wu, Y. Q., Jia, M. X., Cao, J. L. and Zhang, Y. M. (2012) Exogenous administration of PACAP alleviates traumatic brain injury in rats through a mechanism involving the TLR4/MyD88/NF-$\kappa{B}$pathway. J. Neurotrauma 29, 1941-1959.   DOI   ScienceOn
84 Shintani, N., Suetake, S., Hashimoto, H., Koga, K., Kasai, A., Kawaguchi, C., Morita, Y., Hirose, M., Sakai, Y., Tomimoto, S., Matsuda, T. and Bada, A. (2005) Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regul. Pept. 126, 123-128.   DOI   ScienceOn
85 Lioudyno, M., Skoglosa, Y., Takei, N. and Lindholm, D. (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induces calcitonin gene-related peptide (CGRP) immunoreactivity in vitro. J. Neurosci. Res. 51, 243-256.   DOI
86 Pantaloni, C., Brabet, P., Bilanges, B., Dumuis, A., Houssami, S., Spengler, D., Bockaert, J. and Journot, L. (1996) Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J. Biol. Chem. 271, 22146-22151.   DOI   ScienceOn
87 Chung, C. Y., Seo, H., Sonntag, K. C., Brooks, A., Lin, L. and Isacson, O. (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709-1725.   DOI   ScienceOn