• Title/Summary/Keyword: Adenosine receptors

Search Result 76, Processing Time 0.023 seconds

Regulation of Insulin-Sensitive Cyclic Nucleotide Phosphodiesterase in Adipocytes of Streptozotocin-Induced Diabetic Rats (Streptozotocin으로 당뇨병을 유발시킨 흰쥐의 지방세포에서 일어나는 Insulin-Sensitive Phosphodiesterase의 조절에 관한 연구)

  • Park, Kyung-Sun;Lee, Myung-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.253-261
    • /
    • 1993
  • Possible changes in the role of insulin-sensitive cyclic nucleotide phosphodiesterase(PDE) in mediating the antilipolytic action of insulin were investigated in adipocytes from streptozotocin-induced diabetic rats. Isolated adipocytes prepared from epididymal adipose tissue were incubated, with or without insulin, at $37^{\circ}C$ for 15 min following pretreatment with various drugs or toxins, and three (plasma membranes, microsomal membranes, and cytosol) fractions prepared by differential centrifugation were then assayed for cAMP phosphodiesterase activity. The PDE activities only in the crude microsomal (P2) fractions were activated by insulin both in diabetic and control rats. The basal PDE activities in P2 fractions of adipocytes from diabetic rats were higher than those from control rats, although the maximal effects observed at 2 nM of insulin, $100\;{\mu}M$ of isoproterenol or the combination of both were not significantly different from each other. The insulin-stimulated PDE activities in P2 fractions of adipocytes from diabetic rats were not changed by PIA, a $A_{1}$ adenosine receptor agonist, whereas they were decreased to the basal PDE activities in those from control rats. In addition, the adipocytes from diabetic rats showed an increased sensitivity to pertussis toxin compared to those from controls. There were no differences between diabetic and control rats in the sensitivity of adipocytes to cholera toxin. These data indicate that the impaired signalling through inhibitory receptors such as adenosine receptors in adipocytes from streptozotocin-induced diabetes relates to the loss or the decreased function of $G_i$ proteins, and leads to the increased activity of the insulin-dependent PDE at the basal states.

  • PDF

Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors

  • Kim, Tae-Ho;Custodio, Raly James;Cheong, Jae Hoon;Kim, Hee Jin;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.584-590
    • /
    • 2019
  • Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer's disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptorbenzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with $IC_{50}$ of 1.19, $0.84{\mu}g/kg$, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.

Pharmacological and electrophysiological characterization of rat P2X currents

  • Li, Hai-Ying;Oh, Seog-Bae;Kim, Joong-Soo
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Adenosine 5'-triphosphate (ATP) is an important extracellular signaling molecule which is involved in a variety of physiological responses in many different tissues and cell types, by acting at P2 receptors, either ionotropic (P2X) or G protein-coupled metabotropic receptors (P2Y). P2X receptors have seven isoforms designated as $P2X_{1^-}P2X_7$. In this study, we investigated the electrophysiological and pharmacological properties of rat $P2X_{1^-}P2X_4$ currents by using whole-cell patch clamp technique in a heterologous expression system. When ATP-induced currents were analyzed in human embryonic kidney (HEK293) cells following transient transfection of rat $P2X_{1^-}P2X_4$, the currents showed different pharmacological and electrophysiological properties. ATP evoked inward currents with fast activation and fast desensitization in $P2X_{^1-}$ or $P2X_{3^-}$ expressing HEK293 cells, but in $P2X_{2^-}$ or $P2X_{4^-}$ expressing HEK293 cells, ATP evoked inward currents with slow activation and slow desensitization. While PPADS and suramin inhibited $P2X_2$ or $P2X_3$ receptor-mediated currents, they had little effects on $P2X_4$ receptor-mediated currents. Ivermectin potentiated and prolonged $P2X_4$ receptor-mediated currents, but did not affect $P2X_2$ or $P2X_3$ receptor-mediated currents. We suggest that distinct pharmacological and electrophysiological properties among P2X receptor subtypes would be a useful tool to determine expression patterns of P2X receptors in the nervous system including trigeminal sensory neurons and microglia.

Effects of Caffeine on Auditory- and Vestibular-Evoked Potentials in Healthy Individuals: A Double-Blind Placebo-Controlled Study

  • Tavanai, Elham;Farahani, Saeid;Ghahraman, Mansoureh Adel;Soleimanian, Saleheh;Jalaie, Shohreh
    • Journal of Audiology & Otology
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2020
  • Background and Objectives:The blockage of adenosine receptors by caffeine changes the levels of neurotransmitters. These receptors are present in all parts of the body, including the auditory and vestibular systems. This study aimed to evaluate the effect of caffeine on evoked potentials using auditory brainstem responses (ABRs) and cervical vestibular-evoked myogenic potentials (cVEMPs) in a double-blind placebo-controlled study. Subjects and Methods: Forty individuals (20 females and 20 males; aged 18-25 years) were randomly assigned to two groups: the test group (consuming 3 mg/kg pure caffeine powder with little sugar and dry milk in 100 mL of water), and the placebo group (consuming only sugar and dry milk in 100 mL water as placebo). The cVEMPs and ABRs were recorded before and after caffeine or placebo intake. Results: A significant difference was observed in the absolute latencies of I and III (p<0.010), and V (p<0.001) and in the inter-peak latencies of III-V and I-V (p<0.001) of ABRs wave. In contrast, no significant difference was found in cVEMP parameters (P13 and N23 latency, threshold, P13-N23 amplitude, and amplitude ratio). The mean amplitudes of P13-N23 showed an increase after caffeine ingestion. However, this was not significant compared with the placebo group (p>0.050). Conclusions: It seems that the extent of caffeine's effects varies for differently evoked potentials. Latency reduction in ABRs indicates that caffeine improves transmission in the central brain auditory pathways. However, different effects of caffeine on auditory- and vestibular-evoked potentials could be attributed to the differences in sensitivities of the ABR and cVEMP tests.

Effects of Caffeine on Auditory- and Vestibular-Evoked Potentials in Healthy Individuals: A Double-Blind Placebo-Controlled Study

  • Tavanai, Elham;Farahani, Saeid;Ghahraman, Mansoureh Adel;Soleimanian, Saleheh;Jalaie, Shohreh
    • Korean Journal of Audiology
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2020
  • Background and Objectives:The blockage of adenosine receptors by caffeine changes the levels of neurotransmitters. These receptors are present in all parts of the body, including the auditory and vestibular systems. This study aimed to evaluate the effect of caffeine on evoked potentials using auditory brainstem responses (ABRs) and cervical vestibular-evoked myogenic potentials (cVEMPs) in a double-blind placebo-controlled study. Subjects and Methods: Forty individuals (20 females and 20 males; aged 18-25 years) were randomly assigned to two groups: the test group (consuming 3 mg/kg pure caffeine powder with little sugar and dry milk in 100 mL of water), and the placebo group (consuming only sugar and dry milk in 100 mL water as placebo). The cVEMPs and ABRs were recorded before and after caffeine or placebo intake. Results: A significant difference was observed in the absolute latencies of I and III (p<0.010), and V (p<0.001) and in the inter-peak latencies of III-V and I-V (p<0.001) of ABRs wave. In contrast, no significant difference was found in cVEMP parameters (P13 and N23 latency, threshold, P13-N23 amplitude, and amplitude ratio). The mean amplitudes of P13-N23 showed an increase after caffeine ingestion. However, this was not significant compared with the placebo group (p>0.050). Conclusions: It seems that the extent of caffeine's effects varies for differently evoked potentials. Latency reduction in ABRs indicates that caffeine improves transmission in the central brain auditory pathways. However, different effects of caffeine on auditory- and vestibular-evoked potentials could be attributed to the differences in sensitivities of the ABR and cVEMP tests.

Pharmacological Action of Panax Ginseng on the Behavioral Toxicities Induced by Psychotropic Agents

  • Kim Hyoung-Chun;Shin Eun-Joo;Jang Choon-Gon;Lee Myung-Koo;Eun Jae-Soon;Hong Jin-Tae;Oh Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.995-1001
    • /
    • 2005
  • Morphine-induced analgesia has been shown to be antagonized by ginseng total saponins (GTS), which also inhibit the development of analgesic tolerance to and physical dependence on morphine. GTS is involved in both of these processes by inhibiting morphine-6-dehydrogenase, which catalyzes the synthesis of morphinone from morphine, and by increasing the level of hepatic glutathione, which participates in the toxicity response. Thus, the dual actions of ginseng are associated with the detoxification of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contractions in guinea pig ileum (I-L-receptors) and mouse vas deferens $(\delta-receptors)$ are not mediated through opioid receptors, suggesting the involvement of non-opioid mechanisms. GTS also attenuates hyperactivity, reverse tolerance (behavioral sensitization), and conditioned place preference induced by psychotropic agents, such as methamphetamine, cocaine, and morphine. These effects of GTS may be attributed to complex pharmacological actions between dopamine receptors and a serotonergic/adenosine $A_{2A}1\delta-opioid$ receptor complex. Ginsenosides also attenuate the morphine-induced cAMP signaling pathway. Together, the results suggest that GTS may be useful in the prevention and therapy of the behavioral side effects induced by psychotropic agents.

Changes in $A_{1}$, Adenosine Receptor-Adenylyl Cyclase System of Rat Adipocytes Fellowing Induction of Experimental Diabetes by Streptozotocin Treatment (Streptozotocin으로 당뇨병을 유발시킨 쥐의 지방세포에 나타나는 $A_{1}$, Adenosine Receptor-Adenylyl Cyclase System의 변화)

  • Park, Kyung-Sun;Lee, Myung-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.97-105
    • /
    • 1993
  • Adenosine receptors in rat adipose tissues have been reported to be of $A_{1}$ subclass, and their stimulation leads to inhibition of adenylyl cyclase, resulting in inhibition of lipolysis. In the present study we investigated changes in $A_{1}$ adenosine receptor-adenylyl cyclase system of adipocytes following induction of experimental diabetes in rats. One week following experimental diabetes were induced by intravenous injection of streptozotocin (50 mg/kg body wt.), adipocytes from rats $(170{\sim}230g)$ fed ad libitum were isolated using collagenase. When adipocytes were incubated for 1 h with 1 unit/ml adenosine deaminase and $1\;{\mu}M$ isoproterenol, and assayed for glycerol formation, it was found that the inhibition of lipolysis in diabetic adipocytes by $(-)-N^{6}-(R-phenylisopropyl)adenosine$ (PIA), an $A_{1}$, adenosine receptor agonist, was twice that of control adipocytes. In an effort to delineate the mechanism(s), $[^{3}H]PIA$ binding to adipocytic membranes from diabetic and control rats were determined. Neither the affinities nor numbers of $A_{1}$ adenosine receptor were significantly different from each other (Best fit parameters for the one-site model are: $K_{d}=0.51{\pm}0.09nM$ and $B_{max}=1.60{\pm}0.12\;pmoles/mg$ protein for control membranes; $K_{d}=0.54{\pm}0.21\;nM$ and $B_{max}=1.72{\pm}0.31\;pmoles/mg$ protein for diabetic membranes). However, the inhibiton by PIA of the isoproterenol-stimulated adenylyl cyclase activities was found to be 1.9 times higher in adipocytic membranes from diabetic rats than those from controls. These results suggest that the increased sensitivity of inhibition of lipolysis to PIA in adipocytic membranes from diabetic rats is due to changes in signal transduction pathways, rather than alterations of $A_{1}4 adenosine receptor molecules themselves.

  • PDF

Effect of $K^+-channel$ Blockers on the Muscarinic- and $A_1-adenosine-Receptor$ Coupled Regulation of Electrically Evoked Acetylcholine Release in the Rat Hippocampus

  • Yu, Byung-Sik;Kim, Do-Kyung;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • It was attempted to clarify the participation of $K^+-channels$ in the post-receptor mechanisms of the muscarinic and $A_1-adenosine$ receptor- mediated control of acetylcholine (ACh) release in the present study. Slices from the rat hippocampus were equilibrated with $[^3H]$choline and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 V/cm, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Oxotremorine (Oxo, $0.1{\sim}10\;{\mu}M$), a muscarinic agonist, and $N^6-cyclopentyladenosine$ (CPA, $1{\sim}30\;{\mu}M$), a specific $A_1-adenosine$ agonist, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. 4-aminopyridine (4AP), a specific A-type $K^+-channel$ blocker ($1{\sim}100\;{\mu}M$), increased the evoked ACh release in a dose-related fashion, and the basal rate of release is increased by 3 and $100\;{\mu}M$. Tetraethylammonium (TEA), a non-specific $K^+-channel$ blocker ($0.1{\sim}10\;{\mu}M$), increased the evoked ACh release in a dose-dependent manner without affecting the basal release. The effects of Oxo and CPA were not affected by $3\;{\mu}M$ 4AP co-treatment, but 10 mM TEA significantly inhibited the effects of Oxo and CPA. 4AP ($10\;{\mu}M$)- and TEA (10 mM)-induced increments of evoked ACh release were completely abolished in Ca^{2+}-free$ medium, but these were recoverd in low Ca^{2+}$ medium. And the effects of $K^+-channel$ blockers in low Ca^{2+}$ medium were inhibited by $Mg^{2+}$ (4 mM) and abolished by $0.3\;{\mu}M$ tetrodotoxin (TTX). These results suggest that the changes in TEA-sensitive potassium channel permeability and the consequent limitation of Ca^{2+}$ influx are partly involved in the presynaptic modulation of the evoked ACh-release by muscarinic and $A_1-adenosine$ receptors of the rat hippocampus.

  • PDF

The Influence of $N^6-cyclopentyladenosine$ and Magnesium on Norepinephrine Release in the Rat Hippocampus

  • Park, Yeung-Bong;Park, Sang-Duk;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.135-142
    • /
    • 1997
  • As it has been reported that the depolarization-induced norepinephrine (NE) release is modulated by activation of presynaptic $A_1$-adenosine heteroreceptor and various lines of evidence indicate that $A_2$-adenosine receptor also presents in hippocampus, and that the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of adenosine receptors in the modulation of hippocampal NE release. Slices from the rat hippocampus were equilibrated with $[^3H]-NE$ and the release of the labelled product, $[^3H]-NE$, was evoked by electrical stimulation (3 Hz, 5 V $cm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. $N^6-cyclo-pentyladenosine$ (CPA), in concentrations ranging from 0.1 to 10 ${\mu}M$, decreased the $[^3H]-NE$ release in a dose-dependent manner without changing the basal rate of release, and these effects were significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 ${\mu}M$) treatment. When the magnesium concentration was reduced to 0.4 mM or completely removed, the evoked NE release increased along with decreased basal rate of release. In contrast, increasing the magnesium concentrations to 2.4 and 4 mM, decreased the evoked NE release. The CPA effects on evoked NE release were reducedby magnesium removal, but potentiated by 2.4 mM magnesium in the medium. 5-(N-cyclopropyl)-carboxamodiadenosine (CPCA, 1 & 10 ${\mu}M$), an $A_2$-agonist, decreased the evoked tritium outflow, and this effect was also abolished by DPCPX pretreatment. CGS, a powerful $A_2$-agonist, did not affect the evoked NE release. However, the effects of CPCA and CGS on evoked NE release were significantly increased by pretreatment of DPCPX in the magnesium-free medium. These results indicate that inhibitory effect of $A_1$-adenosine receptor on NE release is magnesium-dependent, and $A_2$-receptor may be present in the rat hippocampus.

  • PDF

Predominant $D_1$ Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration

  • Hu, Zhenzhen;Oh, Eun-Hye;Chung, Yeon Bok;Hong, Jin Tae;Oh, Ki-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.89-97
    • /
    • 2015
  • The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the $3^{rd}$ day. CART peptides were over-expressed on the $5^{th}$ day in the striata of behaviorally sensitized mice. A higher proportion of $CART^+$ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both $D_1R$ and $D_2R$ antagonists, SCH 23390 ($D_1R$ selective) and raclopride ($D_2R$ selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/ protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both $D_1R$ and $D_2R$ knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the $D_1R$-KO mice, but not in the $D_2R$-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by $D_1R$.