Pharmacological Action of Panax Ginseng on the Behavioral Toxicities Induced by Psychotropic Agents

  • Kim Hyoung-Chun (Neurotoxicology Program, College of Pharmacy, kangwon National University) ;
  • Shin Eun-Joo (Neurotoxicology Program, College of Pharmacy, kangwon National University) ;
  • Jang Choon-Gon (College of Pharmacy, Sungkyunkwan University) ;
  • Lee Myung-Koo (College of Pharmacy, Chungbuk National University) ;
  • Eun Jae-Soon (College of Pharmacy, Woosuk University) ;
  • Hong Jin-Tae (College of Pharmacy, Chungbuk National University) ;
  • Oh Ki-Wan (College of Pharmacy, Chungbuk National University)
  • Published : 2005.09.01

Abstract

Morphine-induced analgesia has been shown to be antagonized by ginseng total saponins (GTS), which also inhibit the development of analgesic tolerance to and physical dependence on morphine. GTS is involved in both of these processes by inhibiting morphine-6-dehydrogenase, which catalyzes the synthesis of morphinone from morphine, and by increasing the level of hepatic glutathione, which participates in the toxicity response. Thus, the dual actions of ginseng are associated with the detoxification of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contractions in guinea pig ileum (I-L-receptors) and mouse vas deferens $(\delta-receptors)$ are not mediated through opioid receptors, suggesting the involvement of non-opioid mechanisms. GTS also attenuates hyperactivity, reverse tolerance (behavioral sensitization), and conditioned place preference induced by psychotropic agents, such as methamphetamine, cocaine, and morphine. These effects of GTS may be attributed to complex pharmacological actions between dopamine receptors and a serotonergic/adenosine $A_{2A}1\delta-opioid$ receptor complex. Ginsenosides also attenuate the morphine-induced cAMP signaling pathway. Together, the results suggest that GTS may be useful in the prevention and therapy of the behavioral side effects induced by psychotropic agents.

Keywords

References

  1. Bhargava, H. N. and Ramarao, P., The effects of Panax ginseng on the development of tolerance to the pharmacological actions of morphine in the rats. Gen. Pharmac., 2, 521-525 (1991)
  2. Butcher, S. P., Fairbrother, I. S., Kelly, J. S., and Arbuthnott, G. W., Amphetamine-induced dopamine release in rat striatum: An in vivo microdialysis study. J. Neurochem., 50, 346-355 (1988) https://doi.org/10.1111/j.1471-4159.1988.tb02919.x
  3. Choi, S., Jung, S. Y., Rhim, H., Jeong, S. W., Lee, S. M., and Nah, S. Y., Evidence that ginsenosides prevent the development of opioid tolerance at the central nervous system. Life Sci., 67, 969-975 (2000) https://doi.org/10.1016/S0024-3205(00)00682-2
  4. Collier, H. O. J. and Francis, D. L., Morphine abstinence is associated with increased cyclic AMP. Nature, 225, 159-162 (1975) https://doi.org/10.1038/255159b0
  5. Di Chiara, G. and Imperato, A., Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesilimbic system of freely moving rats. Proc. Natl. Acad. Sci. U.S.A., 85, 5274-5278 (1988a) https://doi.org/10.1073/pnas.85.14.5274
  6. Di Chiara, G. and Imperato, A., Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharmacal. Exp. Ther., 185, 1067-1080 (1988b)
  7. Hadfield, M. G., Matt, D. E. W, and Ismay, J. A., Cocaine: Effects of in vivo administration on synaptosomal uptake of norepinephrine. Biachem. Pharmacol., 29,1861-1863 (1980) https://doi.org/10.1016/0006-2952(80)90154-9
  8. Heikkila, R. E., Orlansky, H., Mytilineou, C., and Cohen, G, Amphetmaine: Evaluation of d- and I-isomers as releasing agents and uptake inhibitors for $^{3}H$-dopamine and $^{3}H$- norepinephrine in slices of rat neostriatum and cerebral cortx. J. Pharmacol. Exp. Ther., 193,47-56 (1975)
  9. Heikkila, R. E., Cobbat, F. S., Mazino, L., and Duvoisin, R. C., Rotational behavior induced by cocaine analogue in rats with unilateral 6-OHDA lesions for the substantia nigra: Dependence upon dopaminergic uptake inhibition. J. Pharmacal. Exp. Ther., 211,198-194 (1979)
  10. Hunt, P, Kannenqiesser, M. H., and Raynauld, J. P, Nomifensine: A new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus stiatum. J. Pharm. Pharmacol., 26,370-371 (1974) https://doi.org/10.1111/j.2042-7158.1974.tb09294.x
  11. Huong, N. T. T., Matsumoto, K., Yamasaki, K., Duc, N. M., Nham, N. T., and Watanabe, H., Majonosides-R2, a major constituent of Vietnamese ginseng attenuates opioid-induced antinociception. Pharmacol. Biachem. Behav., 57, 285-291 (1997) https://doi.org/10.1016/S0091-3057(96)00348-6
  12. Iwamoto, E. T., Ho, I. K., and Way, E. L., Elevation of brain dopamine during naloxone precipitated withdrawal in morphine dependent mice and rats. J. Pharmacol. Exp. Ther., 187, 558-567 (1973)
  13. Joo, C. N., Biochemical studies of Panax ginseng. Kor. Biochem. News, 4, 5 (1984)
  14. Justinova, Z., Ferre, S., Segal, P. N., Antoniou, K., Soinas, M., Pappas, L. A., Highkin, J. L., Hockemeyer, J., Munzar, P, and Goldberg, S. R., Involvement of adenosine $A_{1}$and $A_{2A}$ receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats. J. Pharmacol. Exp. Ther., 307, 977-986 (2003) https://doi.org/10.1124/jpet.103.056762
  15. Kim, H. S., Oh, K. W, and Oh, S., Antagonism of analgesic effects of morphine in mice by ginseng saponins. J. Kor. Pharm. Sci., 16, 135-138 (1986)
  16. Kim. H. S., Oh, K. W, Park, W.K., Choi, J. W, and Bae, D. S., Effects of Panax ginseng on the development of morphine induced tolerance and dependence (VI). Arch. Pharm. Res., 10,188-192 (1987a) https://doi.org/10.1007/BF02861912
  17. Kim, H. S., Oh, K. W., Park. W. K., Yanmano, S., and Toki, S., Effects of Panax ginseng on the development of morphine tolerance and dependence. Kor. J. Ginseng Sci., 11, 182-190 (1987b)
  18. Kim, H. S., Oh, K. W, Lee, M. K., Choi, K. J., and Kim, S. C., Effects of ginseng total saponin on the development of acute and delayed typed tolerance to morphine. Kor. J. Ginseng Sci., 13, 239-241 (1989)
  19. Kim, H. S., Oh, K. W, Lee, M. K., Back, D. Y, Rheu, H. M., and Seong, Y. H., Antinarcotic effects of Panax ginseng. Kor. J. Ginseng Sci., 14, 178-186 (1990a)
  20. Kim, H. S., Jang, C. G., and Lee, M. K., Antinarcotic effects of the standardized ginseng extract G115 on morphine. Planta Med., 56, 158-163 (1990b) https://doi.org/10.1055/s-2006-960915
  21. Kim, H. S., Oh, K. W, Rheu, H. M., and Kim, S. H., Antagonism of U-50,488H-induced antinociception by ginseng total saponins is dependent on serotonergic mechanisms. Pharmacol. Biochem. Behav., 42, 587-593 (1992a) https://doi.org/10.1016/0091-3057(92)90003-X
  22. Kim, H. S., Ann, S. H., Seong, Y. H., Kim, S. H., and Oh, K. W, Effects of ginseng total saponins on the analgesia and tolerance development of pentazocine. Kor. J. Ginseng Sci., 16, 93-98 (1992b)
  23. Kim, H. S., Oh, K. W, Park, W. K., and Ho, I. K., Effects of ginseng saponin on morphine physical dependence. Kor. J. Ginseng Sci., 16, 13-17 (1992c)
  24. Kim, H. S., Kim S. H., Seong, Y. H., and Oh. K. W, Effects of ginseng total saponins on the antinociception and the development of U-50,488H. Arch. Pharm. Res., 16, 237-243 (1993a) https://doi.org/10.1007/BF02974489
  25. Kim, H. S., Seong, Y. H., Kim, S. H., Kim, S. C., Choi, K. J., and Oh, K. W, Effects of ginseng saponins and U-50,488H on electrically induced twitch response of mouse vas deferens. Kor. J. Ginseng Sci., 17, 109-113 (1993c)
  26. Kim, H. S., Seong, Y. H., Lim, H. J., Jang, C. G., and Oh, K. W, Effects of ginseng saponins and morphine on electrically induced twitch response of mouse vas deferens. Experimental Neurobiology, 2, 43-47 (1993d)
  27. Kim, H. S. and Oh, K. W, Effects of ginseng total saponin on the development of psychic and physical dependence on nalbuphine. J. Appl. Pharmacol., 2, 316-321 (1994)
  28. Kim, H. S., Kang, J. G., Seong, Y. H., Nam, K. Y, and Oh, K. W, Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav., 50, 23-27 (1995a) https://doi.org/10.1016/0091-3057(94)00224-7
  29. Kim. H. S., Kang, J. G., Rheu, H. M., Cho, D. H., and Oh, K. W, Blockade by ginseng total saponin of the development of methamphetamine reverse tolerance and dopamine receptor supersensitivity in mice. Planta Med., 61, 22-25 (1995b) https://doi.org/10.1055/s-2006-957991
  30. Kim, H. S., Kang, J. G., and Oh, K. W, Inhibition by ginseng total saponin of the development of morphine reverse tolerance and dopamine receptor supersensitivity in mice. Gen. Pharmac., 26, 1071-1076 (1995c) https://doi.org/10.1016/0306-3623(94)00267-Q
  31. Kim, H. S., Jang, C. G., Oh, K. W, Seong, Y. H., Rheu, H. M., Cho, D. H., and Kang, S. Y, Effects of ginseng total saponin on cocaine-induced hyperactivity and conditioned place preference in mice. Pharmacol. Biochem. Behav., 53, 185-190 (1996a) https://doi.org/10.1016/0091-3057(95)00170-0
  32. Kim, H. S., Jang, C. G., Park, W. K., Oh, K. W, Rheu, H. M., Cho, D. H., and Oh, S., Blockade by ginseng total saponin of the development of methamphetamine-induce hyperactivity and conditioned place preference in mice. Gen. Pharmac., 27, 199-204 (1996b) https://doi.org/10.1016/0306-3623(95)02023-3
  33. Kim, H. S., Hong, Y. T., Oh, K. W, Seong, Y. H., Rheu, H. M., Cho, D. H., Oh, S., Park, W. K., and Jang, C. G, Inhibition by ginsenosides Rb1, and Rg1, of methamphetamine-induce hyperactivity, conditioned place preference and dopamine receptor supersensitivity in mice. Gen. Pharmac., 30, 783-789 (1998a) https://doi.org/10.1016/S0306-3623(97)00330-3
  34. Kim, H. S., Jang, C. G, Oh, K. W, Oh, S., Rheu, H. M., Lee, G. S., Seong, Y. H., and Park, W. K., Effects of ginseng total saponin on the morphine-induce hyperactivity and conditioned place preference in mice. J. Ethnopharmacol., 60,33-42 (1998b) https://doi.org/10.1016/S0378-8741(97)00131-1
  35. Kim, H. S., Hong, Y. T., and Jang, C. G,$Rg_{1}$, and $Rb_{1}$, on morphine-induced hyperactivity and reinforcement in mice. Effects of ginsenosides J. Pharm. Pharmacol., 50, 555-560 (1998c) https://doi.org/10.1111/j.2042-7158.1998.tb06198.x
  36. Kim, H. S., Kim, K. S., and Oh, K. W, Inhibition by ginsenosides $Rb_{1}$, and $Rg_{1}$ of cocaine-induced hyperactivity, conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Pharmcol. Biochem. Behav., 63, 407-412 (1999a) https://doi.org/10.1016/S0091-3057(99)00020-9
  37. Kim, H.S., Zhang, Y. H., Fang, L. H., and Lee, M. K., Effects of ginsenosides on bovine adrenal tyrosine hydroxylase. J. Ethanopharmacol., 66, 107-111 (1999b) https://doi.org/10.1016/S0378-8741(98)00238-4
  38. Kim, Y. C., Lee, J. H., Kim, M. S., and Lee, N. C., Effects of the saponin fraction of Panax ginseng on catecholamines in mouse brain. Arch. Pharm. Res., 8, 45-48 (1985) https://doi.org/10.1007/BF02897566
  39. Kimura, T., Saunders, P. A., Kim, H. S., Rheu, H. M., Oh, K. W, and Ho, I. K., Interactions of ginsenosides with ligand-bindings of $GABA_{A}$and $GABA_{B}$receptors. Gen. Pharmac., 25, 193-199 (1994) https://doi.org/10.1016/0306-3623(94)90032-9
  40. Kosten,T. R. and Hollister, L. E., Drugs of abuse, In Katzung, B. G 8th (Eds.). Basic and Clinical Pharmacology, McGraw Hill, Medical Publishing Division, New York, pp. 532-548, (2001)
  41. Nabata, H., Saito, H., and Takagi, K., Pharmacological studies on neutral saponins (GNS) of Panax ginseng root. Jpn. J. Pharmacol., 23, 29-41 (1973) https://doi.org/10.1254/jjp.23.29
  42. Nagamatsu, K., Kido, Y, Terao, T., Ishida, T., and Toki, S., Protective effects of sulfhydryl compounds on acute toxicity of morphine. Life Sci., 30, 1121-1127 (1982) https://doi.org/10.1016/0024-3205(82)90533-1
  43. Nagamatsu, K., Kido, Y, Terao, T., Ishida, T., and Toki, S., Studies on the antagonism of covalent binding of morphine metabolites to proteins in mouse. Drug Met. Disps., 11, 190 (1983)
  44. Nicola, S. M., Surmeier, D. J., and Malenka, R. C., Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci., 23, 185-215 (2000) https://doi.org/10.1146/annurev.neuro.23.1.185
  45. Oh, K. W, Kim, H. S., and Wagner, G C., Ginseng total saponin inhibits the dopaminergic depletions induced by methamphetamine. Planta Medica., 63, 80-81 (1997) https://doi.org/10.1055/s-2006-957610
  46. Oh, K. W, Lim, H. K., Park, C. B., Shin, I. C., and Hong, J. T., Effects of ginseng saponin on [$^{3}H$]DAGO bindings of opioid m-receptors. J. Ginseng Res., 26,187-190 (2002) https://doi.org/10.5142/JGR.2002.26.4.187
  47. Park, C. W, Pharmacological studies of Panax ginseng. Kor. Biochem. News, 4, 37 (1984)
  48. Robinson, T. E. and Becker, J. B., Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev., 11, 157-198 (1986) https://doi.org/10.1016/0165-0173(86)90002-0
  49. Roy, S. N., Bhattachacharyya, S., and Pradhan, S. N., Behavioral and neurochemical effects of repeated administration of cocaine in rats. Neuropharmacol., 17, 559-564 (1978) https://doi.org/10.1016/0028-3908(78)90148-X
  50. Saito, H., Morita, M., and Takagi, K., Pharmacological studies of Panax ginseng leaves. Jpn. J. Pharmacol., 23, 43-56 (1973) https://doi.org/10.1254/jjp.23.43
  51. Scheel-Kruger, J., Greastrup, C., Nielson, M., Golembiowski, K., and Mogilmicka, E., Cocaine: Discussion on the role of dopamine in the biochemical mechanism of action. In Kilby, E. E. (Eds.). Cocaine and other stimulants, Plenum Press, New York, pp. 373-407, (1977)
  52. Schole, J., Influence of Panax ginseng on the glutathione system of rats liver, Belastung, Ernahrung und Resistenz-Forschritte in der Tierphysiologie und Tierernahrung, 9, 35 (1978)
  53. Schultz, W, Dopamine neurons and their role in reward mechamism. Curr. Opin. Neurobiol., 7, 191-197 (1997) https://doi.org/10.1016/S0959-4388(97)80007-4
  54. Segal, D. S., Geyer, M. A, and Schuckit, M. A, Stimulant-induced psychosis: An evaluation of animals models, In Youdim, M. B. H., Lovenberg, W, Sharman, D. F., and Lagnado, J. R. (Eds). Essays in neurochemistry and neuropharmacology, John Wiley & Sons, Sussex, England, pp. 95-129, (1981)
  55. Segal, D. S. and Geyer, M. A, Animal models of psychophathology, In Carvenar, J. O. Jr. (Eds.). Psychiatry, Lippincortt, Philadelphia, pp. 1-18, (1985)
  56. Shin, E J., Nabeshima, T., Suh, H. W, Jhoo, W.K., Oh, K. W, Lim, Y. K., Kim, D. S., Choi, K. W, and Kim, H. C., Ginsenosides attenuate methamphetamine-induced behavioural side effects in mice via activation of adenosine $A_{2A}$ receptors: Possible involvements of the striatal reduction in AP-1 DNA binding activity and proenkephalin gene expression. Behav. Brain Res., 158, 143-157 (2005) https://doi.org/10.1016/j.bbr.2004.08.018
  57. Suh, H. W, Song, D. K., and Kim, Y. H., Effects of ginsenosides injected intrayhecally or intracerebroven-tricularly on antinociception induced by morphine administered intracerebroventricaularly in the mouse. Gen. Pharmac., 29, 873-977 (1997) https://doi.org/10.1016/S0306-3623(97)00026-8
  58. Takagi, H., Takahashi, T., and Kimura, K., Antagonism of the analgesic effect of morphine in mice by tetrabenazine and reserpine. Archsint. Pharmacodyn. Ther., 149, 484-490 (1964)
  59. Takahashi, E., Kudo, K., Akasaka, Y., Miyate, Y., and Tachikawa, E., Actions of saponins of red ginseng on the sympathetic nerve and effects of combination of red ginseng with other herb medicines on cardiac functions. Ginseng Rev., 16,88-92 (1993)
  60. Tokuyama, S., Oh, K. W., Kim, H. S., Takahashi, M., and Kaneto, H., Blockade by ginseng extract of the development of reverse tolerance to the ambulation-accelerating effects of methamphetamine in mice. Jpn. J. Pharmacol., 59, 423-423 (1992) https://doi.org/10.1254/jjp.59.423
  61. Tokuyama, S., Takahashi, M., and Kaneto, H., The effect of ginseng extract on locomotor sensitization and conditioned place preference induced by methamphetamine and cocaine in mice. Pharmacol. Biochem. Behav., 54, 671-676 (1996) https://doi.org/10.1016/0091-3057(96)00021-4
  62. Verri, R. A, Graeff, F. G, and Corrado, A P, Antagonism of morphine analgesia by reserpine and alpha-methyltyrosine, and the role of played by catecholamines in the morphine analgesic action. J. Pharm. Pharmacol., 19,709-714 (1967) https://doi.org/10.1111/j.2042-7158.1967.tb08021.x
  63. Wagner, G. C., Ricaurte, G. A., Johnson, C. E., Schuster C. R., and Seiden, L. S., Amphetmaine induced depletion of dopamine and loss of dopamine uptake sites in caudate. Neurology, 30, 547-550 (1980a) https://doi.org/10.1212/WNL.30.5.547
  64. Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, R. G., and Westley, J., Long lasting depletions of striatal dopamine and uptake sites following repeated administration of methamphetamine. Brain Res., 181, 151-160 (1980b) https://doi.org/10.1016/0006-8993(80)91265-2
  65. Watanabe, J., Oh, K. W., Kim, H. S., Takahashi, M., and Kaneto, H., A non-opioid mechanism in the inhibitory effect of ginseng saponins on electrically evoked contractions of guinea pig ileum and mouse vas deferens. J. Pharmacobiodyn., 11, 453-458 (1988a) https://doi.org/10.1248/bpb1978.11.453
  66. Watanabe, J., Takahashi, M., and Kaneto, H., Distinctive effect of ginseng saponins on the development of morphine tolerance in guinea pig ileum and mouse vas deferens. J. Pharmacobiodyn., 11, 744-748 (1988b) https://doi.org/10.1248/bpb1978.11.744
  67. Wu, C. F., Liu, Y. L., Song, M., Liu, W., Wang, J. H., Li, X., and Yang, J, Y., Protective effects of pseudoqlnsenosides-$F_{11}$, on methamphetamine-induced neurotoxicity in mice. Pharmacol. Biochem. Behav., 76, 103-109 (2003) https://doi.org/10.1016/S0091-3057(03)00215-6
  68. Yamamoto, S., Kageura, E., Ishida, T., and Toki, S., Purification and characterization of guinea pig liver morphine 6dehydrogenase. J. Biol. Chem., 260, 5259-5264 (1985)