Pharmacological and electrophysiological characterization of rat P2X currents

  • Li, Hai-Ying (Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Oh, Seog-Bae (Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Joong-Soo (Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University)
  • Published : 2008.03.31

Abstract

Adenosine 5'-triphosphate (ATP) is an important extracellular signaling molecule which is involved in a variety of physiological responses in many different tissues and cell types, by acting at P2 receptors, either ionotropic (P2X) or G protein-coupled metabotropic receptors (P2Y). P2X receptors have seven isoforms designated as $P2X_{1^-}P2X_7$. In this study, we investigated the electrophysiological and pharmacological properties of rat $P2X_{1^-}P2X_4$ currents by using whole-cell patch clamp technique in a heterologous expression system. When ATP-induced currents were analyzed in human embryonic kidney (HEK293) cells following transient transfection of rat $P2X_{1^-}P2X_4$, the currents showed different pharmacological and electrophysiological properties. ATP evoked inward currents with fast activation and fast desensitization in $P2X_{^1-}$ or $P2X_{3^-}$ expressing HEK293 cells, but in $P2X_{2^-}$ or $P2X_{4^-}$ expressing HEK293 cells, ATP evoked inward currents with slow activation and slow desensitization. While PPADS and suramin inhibited $P2X_2$ or $P2X_3$ receptor-mediated currents, they had little effects on $P2X_4$ receptor-mediated currents. Ivermectin potentiated and prolonged $P2X_4$ receptor-mediated currents, but did not affect $P2X_2$ or $P2X_3$ receptor-mediated currents. We suggest that distinct pharmacological and electrophysiological properties among P2X receptor subtypes would be a useful tool to determine expression patterns of P2X receptors in the nervous system including trigeminal sensory neurons and microglia.

Keywords

References

  1. Bianchi B.R., Lynch K.J., Touma E, Niforatos W, Burgard E.C., Alexander K.M., Park H.S., Yu H, Metzger R, Kowaluk E, Jarvis M.F., van Biesen T.: Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol. 376:127-38, 1999 https://doi.org/10.1016/S0014-2999(99)00350-7
  2. Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R.: A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett. 375:129-33, 1995 https://doi.org/10.1016/0014-5793(95)01203-Q
  3. Boeynaems J.M., Communi D, Gonzalez N.S., Robaye B.: Overview of the P2 receptors. Semin Thromb Hemost. 31:139-49, 2005 https://doi.org/10.1055/s-2005-869519
  4. Burgard E.C., Niforatos W, van Biesen T, Lynch K.J., Touma E, Metzger R.E., Kowaluk E.A., Jarvis M.F.: P2X receptormediated ionic currents in dorsal root ganglion neurons. J Neurophysiol. 82:1590-8, 1999 https://doi.org/10.1152/jn.1999.82.3.1590
  5. Burnstock G.: Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther. 110:433-54, 2006 https://doi.org/10.1016/j.pharmthera.2005.08.013
  6. Burnstock G.: Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 87:659-797, 2007a https://doi.org/10.1152/physrev.00043.2006
  7. Burnstock G.: Purine and pyrimidine receptors. Cell Mol Life Sci. 64:1471-83, 2007b https://doi.org/10.1007/s00018-007-6497-0
  8. Dutton JL, Poronnik P, Li GH, Holding CA, Worthington RA, Vandenberg RJ, Cook DI, Barden JA, Bennett MR.: P2X(1) receptor membrane redistribution and down-regulation visualized by using receptor-coupled green fluorescent protein chimeras. Neuropharmacology. 23;39:2054-66, 2000
  9. Evans R.J., Lewis C, Buell G, Valera S, North R.A., Surprenant A.: Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol Pharmacol. 48:178-83, 1995
  10. Hamilton SG.: ATP and pain. Pain Pract. 2:289-94, 2002 https://doi.org/10.1046/j.1533-2500.2002.02041.x
  11. Ikeda M, Characterization of functional P2X(1) receptors in mouse megakaryocytes. Thromb Res. 119:343-53, 2007 https://doi.org/10.1016/j.thromres.2006.03.007
  12. Jones C.A., Chessell I.P., Simon J, Barnard E.A., Miller K.J., Michel A.D., and Humphrey P.P.: Functional characterization of the P2X4 receptor orthologues. Br J Pharmacol. 129: 388-394, 2000 https://doi.org/10.1038/sj.bjp.0703059
  13. Khakh B.S., North R.A.: P2X receptors as cell-surface ATP sensors in health and disease. Nature. 442:527-32, 2006 https://doi.org/10.1038/nature04886
  14. North R.A.: Molecular physiology of P2X receptors. Physiol Rev. 82:1013-67, 2002 https://doi.org/10.1152/physrev.00015.2002
  15. North R.A., Surprenant A.: Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol. 40:563-80, 2000 https://doi.org/10.1146/annurev.pharmtox.40.1.563
  16. Priel A, Silberberg S.D.: Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol. 123: 281-293, 2004 https://doi.org/10.1085/jgp.200308986
  17. Ralevic V, Burnstock G.: Receptors for purines and pyrimidines. Pharmacol Rev. 50:413-92, 1998
  18. Sim J.A., Park C.K., Oh S.B., Evans R.J., North R.A.: P2X(1) and P2X(4) receptor currents in mouse macrophages. Br J Pharmacol. 152:1283-90, 2007 https://doi.org/10.1038/sj.bjp.0707504
  19. Toulme E, Soto F, Garret M, Boue-Grabot E.: Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin. Mol Pharmacol. 69:576-87, 2006 https://doi.org/10.1124/mol.105.018812
  20. Townsend-Nicholson A, King B.F., Wildmann S.S., and Burnstock G. Molecular cloning, functional characterization and possible cooperativity between murine P2X4 and P2X4a receptors. Mol Brain Res. 64: 246-254, 1999 https://doi.org/10.1016/S0169-328X(98)00328-3
  21. Woodward JJ, Nowak M, Davies DL.: Effects of the abused solvent toluene on recombinant P2X receptors expressed in HEK293 cells. Mol Brain Res. 125:86-95, 2004 https://doi.org/10.1016/j.molbrainres.2004.03.005