• 제목/요약/키워드: Adenosine $A2_A$ receptor

검색결과 154건 처리시간 0.022초

흰쥐의 적출배뇨근에서 baclofen의 콜린성신경 억제작용 (Effect of Baclofen on the Cholinergic Nerve Stimulation in Isolated Rat Detrusor)

  • 이광윤;이근미;최은미;최형철;하정희;김원준
    • Journal of Yeungnam Medical Science
    • /
    • 제12권2호
    • /
    • pp.246-259
    • /
    • 1995
  • 배뇨근의 운동성에 대한 baclofen의 억제작용의 기전을 탐구하기 위하여 다음과 같은 실험을 하였다. 흰쥐 (Sprague-Dawley)의 방광에서 적출한 배뇨근절편을 적출근편실험조에 현수하고, 등척성 장력측정기를 사용하여 그 수축력을 묘기하였다. 실험조내의 영양액의 온도는 $37^{\circ}C$로 유지시키고, 95% 산소와 5% 이산화탄소의 혼합기체를 공급하여 pH를 7.4로 유지하였다. 배뇨근절편은 전기장자극에 의해 수축하였는데, 8분간의 전기장자극 유발수축 중 최초의 급격한 수축반응은 mATP와 baclofen에 의해 약간 억제되는 경향을 보였으며, 후기 4분간의 수축반응은 콜린성 무스카린성 수용체 봉쇄제인 atropine과 $GABA_B$ 수용체 효현제인 baclofen에 의해 유의하게 억제되었다. Atropine은 배뇨근 절편의 acetylcholine 유발 수축을 길항하였고, mATP는 ATP 유발 수축을 완전히 봉쇄하였으나, baclofen 존재하에서는 acetylcholine이나 ATP 첨가에 의한 배뇨근의 수축이 영향을 받지 않았다. 이상의 결과를 종합하면, 흰쥐 방광에는 $GABA_B$ 수용체가 존재하며 baclofen은 이 수용체를 통하여 콜린성신경 말단에서의 신경전달체의 유리를 억제하여 배뇨근의 수축성을 감소시킨다고 사료된다.

  • PDF

다양한 식물에서의 PDRN(Polydeoxyribonucleotide) 추출 수율 비교 및 상처치유 효능 분석 (Efficiency of PDNR (Polydeoxyribonucleotide) extraction from various plant species and its in vitro wound healing activity)

  • 송미희;최문혁;정진형;이상식;정우영
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.387-395
    • /
    • 2022
  • PDRN(Polydeoxyribonucleotide)은 조직재생 활성물질로 손상된 세포 및 조직의 자가 재생을 촉진하는 DNA 유래의 중합물질이다. PDRN은 DNA를 다양한 물리적 또는 화학적 방법으로 작은 크기로 절단한 DNA 조각으로 체내 투여시 조직세포 표면의 adenosine A2A receptor 수용체를 자극하여 세포 재생을 촉진하며 상처를 빠르게 회복시키고, 통증도 감소시키는 효과가 있다. 보통 어류의 정소나 정액으로부터 PDRN 추출을 하지만 본 연구에서는 다양한 식물에서 PDRN 추출 실험을 진행하였다. 실험 결과, 7종의 식물에서 PDRN 수율과 순수도는 단위 식물 중량 당 쑥갓이 가장 높았고, 브로콜리가 그 다음으로 우수했다. 이 두 식물의 PDRN을 대상으로 시험관에서 wound healing assay를 진행하여 PDRN의 효능을 분석한 결과, ㎍/ml 수준의 쑥갓과 브로콜리의 PDRN가 유의하게 wound healing 활성이 높음을 확인하였다. 본 연구의 결과는 이들 식물 유래 PDRN이 연어와 같은 어류 유래의 PDRN의 대체제로 사용할 수 있음을 의미한다.

돼지 분만 시기의 조절에 관하여;IV. 자궁 평활근의 운동성에 대한 APT의 영향 (Control of Parturition Time on Pig;IV. Effect of ATP on Uterine Smooth Muscle Motility)

  • 박상은;황보원;변유성;조광제
    • 한국동물위생학회지
    • /
    • 제19권2호
    • /
    • pp.154-162
    • /
    • 1996
  • The effcets of adenosine 5'-triphosphate(ATP) were investigated on the uterine smooth muscle motility in the pig. The results were summarized as follows: 1. The effects of the porcine uterine smooth muscle and the contractile responses increased between the concentration of ATP $10^{-5}$ and $10^{-3}$ M with a dose-dependent manner. 2. The contractile response induced by ATP($10^{-4}$ M) was not blocked by pretreatment with cholinergic receptor blocker, atropine ($10^{-6}$ M) 3. The contractile response induced by ATP ($10^{-4}$ M) was not blocked by pretreatment with $\alpha$ -adrenergic receptor blocker, phentolamine(10$^{-6}$ M) and ${\beta}$-adrenergic blocker, propranolol ($10^{-6}$ M). 4. The contractile response induced by ATP($10^{-4}$ M) was not appeared in 4Ca^{++}$ -free medium. As the concentration of $Ca^{++}$ in $Ca^{++}$ -free medium was increased, the contractile response induced by ATP ($10^{-4}$ M) was enhenced but was completely inhibited by pretreatment with $Ca^{++}$ -channel blocker, papaverine($10^{-6}$ M) or verapamil($10^{-6}$ M). From these results, it was conclued that the effects of ATP were the contraction mediated by purinergic receptor in uterine smooth muscle of pig.

  • PDF

Modulation of Cardiac ATP-Sensitive $K^+$ Channels Via Signal Transduction Mechanisms During Ischemic Preconditioning

  • Han, Jin;Kim, Nari;Seog, Dae-Hyun;Kim, Euiyong
    • Journal of Life Science
    • /
    • 제12권1호
    • /
    • pp.33-42
    • /
    • 2002
  • In several species, a short period of ischemic preconditioning protects the heart by reducing the size of infarcts resulting from subsequent prolonged bouts of ischemia. The mechanism by which activation of ATP-sensitive $K^+$($K_ATP$) channels could provide the memory associated with ischemic preconditioning is still under debate. Several signal transduction pathways have been implicated in the mechanisms of protection induced by ischemic preconditioning. The exact receptor-coupled pathways involved in preconditioning remain to be identified. Likely extracellular agonists are those whose circulating levels increase under conditions that activate $K_ATP$ channels; these conditions include ischemia and ischemic preconditioning. Potential physiological agonists include the following: (1) nitric oxide; (2) catecholamine; (3) adenosine; (4) acetylcholine; (5) bradykinin and (6) prostacycline. The purpose of this review was to understand the mechanism by which biological signal transduction mechanism acts as a link in one or more known receptor-mediated pathways to increase $K_ATP$ channel activity during ischemic preconditioning.

  • PDF

허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할 (Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart)

  • 유호진;박종완;김명석
    • 대한약리학회지
    • /
    • 제32권1호
    • /
    • pp.31-37
    • /
    • 1996
  • 허혈전처치(IP)의 히혈-재관류손상에 대한 심근 보호작용의 기전을 규명하기 위한 일환으로 denosine에 의한 PKC자극이 허혈전처치의 주요 기전으로 작용할 가능성을 조사하였다. 흰쥐 적출심장의 Langendorff 관류 표본에서 실험적인 허혈(30분)-재관류(20분)손상을 유도하였고, 허혈전처치는 허혈-재관류 손상 유도 전에 5분 허혈-5분 재관류를 3회 반복하여 시행하였다. 심근 손상의 지표로 심수축기능, 세포질효소 유출을 측정하였다. Adenosine이 허혈전처치의 심보호 효과에 관여하는지를 관찰하기 위하여 adenosine수용체 억제제인 8-(p-sulfophenyl)-theophylline(SPT), Xanthine amine congener(XAC) 및 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)을 허혈전처치 유도 전에 투여하였다. 또한 PKC가 허혈전처치의 세포내 매개인자로 관여 할 가능성을 관찰하기 위하여 PKC활성 억제제인 polymyxin B 및 chelerythrine과 PKC translocation 억제제인 colchicine을 허혈전처치 유도 전에 투여하였다. 연구성적은 다음과 같다. 1) 허혈전처치는 허혈재관류 심장의 심기능의 저하를 현저히 회복시켜 심기능 회복률은 75%에 달하였다. 2) 허혈-재관류 심장에서 lactate dehydrogenase유출증가는 허혈전처치에 의해 현저히 저하되었다. 3) Adenosine 비선택적 차단제인 SPT와 Al 선택적 차단제인 DPCPX 및 XAC의 투여가 허혈전처치에 의한 심기능회복 및 LDH 유출 감소에 영향을 미치지 않았다. 4) PKC활성 억제제인 polymyxin B 와 chelerythrine을 처치시 히혈전처치 심장의 심기능 회복률이 현저히 감소되었으며 LHD 유출 역시 대조군 심장의 수준으로 증가하였다. 5) PKC translocation을 방해하는 colchicine도 허혈전처치의 심보호 효과를 억제시켰다. 이상의 결과들로부터 adenosine은 흰쥐 심장에서 허혈전처치의 심보호효과에 중요한 세포외 매개물질로 작용할 가능성이 희박하며, PKC는 흰쥐 심장에서 허혈전처치시 세포내 매개 인자로 관여하여 허혈전처치에 의한 심보호효과에 중요한 역할을 할 수 있으리라 사료된다.

  • PDF

Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation

  • Han, Jae Yun;Lee, Sangkyu;Yang, Ji Hye;Kim, Sunju;Sim, Juhee;Kim, Mi Gwang;Jeong, Tae Cheon;Ku, Sae Kwang;Cho, Il Je;Ki, Sung Hwan
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.105-115
    • /
    • 2015
  • Background: Alcoholic steatosis is the earliest and most common liver disease, and may precede the onset of more severe forms of liver injury. Methods: The effect of Korean Red Ginseng extract (RGE) was tested in two murine models of ethanol (EtOH)-feeding and EtOH-treated hepatocytes. Results: Blood biochemistry analysis demonstrated that RGE treatment improved liver function. Histopathology and measurement of hepatic triglyceride content verified the ability of RGE to inhibit fat accumulation. Consistent with this, RGE administration downregulated hepatic lipogenic gene induction and restored hepatic lipolytic gene repression by EtOH. The role of oxidative stress in the pathogenesis of alcoholic liver diseases is well established. Treatment with RGE attenuated EtOH-induced cytochrome P450 2E1, 4-hydroxynonenal, and nitrotyrosine levels. Alcohol consumption also decreased phosphorylation of adenosine monophosphate-activated protein kinase, which was restored by RGE. Moreover, RGE markedly inhibited fat accumulation in EtOH-treated hepatocytes, which correlated with a decrease in sterol regulatory element-binding protein-1 and a commensurate increase in sirtuin 1 and peroxisome proliferator-activated receptor-a expression. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly inhibited fat accumulation in hepatocytes. Conclusion: These results demonstrate that RGE and its ginsenoside components inhibit alcoholic steatosis and liver injury by adenosine monophosphate-activated protein kinase/sirtuin 1 activation both in vivo and in vitro, suggesting that RGE may have a potential to treat alcoholic liver disease.

흰쥐 말초혈액 T-림프구에서 Vasoactive Intestinal Polypeptide의 효과에 대한 Propranolol의 억제 기전 (Inhibitory Mechanism of Propranolol on the Effects of VIP in Peripheral Blood T-lymphocytes of Rat)

  • 안영수;추성이;강동원;이상헌
    • 대한약리학회지
    • /
    • 제31권2호
    • /
    • pp.219-231
    • /
    • 1995
  • Vasoactive intestinal polypeptide(VIP) and ${\beta}-adrenergic$ agonists have immunomodultory effects on the peripheral blood T-lymphocytes of rat through their own receptors. Both of them utilize the same signal transduction pathway. That is, the stimulatory guanine nucleotide binding protein(G protein) mediates the receptor-adenylyl cyclase coupling, producing intracellular increase of cyclic adenosine monophosphate(cAMP). In the previous experiment, propranolol, a ${\beta}-adrenergic$ receptor blocker, inhibited the VIP-induced protein phosphorylation in lymphocytes. However, propranolol could not block the effect induced by forskolin. Therefore, this study was designed to elucidate the mechanism of the inhibitory action of propranolol on the effects of VIP. Using peripheral blood lymphocytes of rats, the effect of propranolol on the receptor binding characteristics of VIP was observed. And the effects of propranolol were compared to the effects of timolol on the cAMP increase induced by isoproterenol, VIP or forskolin. The results obtained are as follows. 1) Receptor binding study showed no significant differences in the affinity or density of VIP receptor between the control and propranolol-pretreated groups. 2) VIP-induced increase of cAMP was inhibited by propranolol, but not by timolol. 3) Both propranolol and timolol suppressed the isoproterenol-induced cAMP increase. 4) Propranolol also inhibited the histamine-induced cAMP increase. 5) Propranolol did not inhibit the increase of cAMP stimulated by forskolin. 6) Lidocaine did not block the VIP-induced cAMP increase. These results show that the inhibitory mechanism of propranolol is not related to ${\beta}-adrenergic$ receptor or its membrane stabilizing effect, and it is suggested that propranolol can block the effects of VIP by inhibiting the intermediate step between the VIP receptor and adenylyl cyclase.

  • PDF

보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향 (Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes)

  • 이수정;김원일;강경화
    • 동의생리병리학회지
    • /
    • 제28권3호
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

Effects of various receptor antagonists on the peripheral antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice

  • Zakaria, Zainul Amiruddin;Sodri, Nurul Husna;Hassan, Halmy;Anuar, Khairiyah;Abdullah, Fatimah Corazon
    • 셀메드
    • /
    • 제2권4호
    • /
    • pp.38.1-38.6
    • /
    • 2012
  • The present study aimed to determine the possible mechanisms of the peripheral antinociception of the aqueous extracts of Dicranopteris linearis (AEDL), Melastoma malabathricum (AEMM) and Bauhinia purpurea (AEBP) leaves in mice. Briefly, the antinociceptive profile of each extract (300, 500, and 1000 mg/kg; subcutaneous (s.c.)), was established using the abdominal constriction test. A single dose (500 mg/kg) of each extract (s.c.) was pre-challenged for 10 min with various pain receptors' antagonists or pain mediators' blockers and 30 min later subjected to the antinociceptive assay to determine the possible mechanism(s) involved. Based on the results obtained, all extracts exerted significant (p < 0.05) antinociceptive activity with dose-dependent activity observed only with the AEMM. Furthermore, the antinociception of AEDL was attenuated by naloxone, atropine, yohimbine and theophylline; AEMM was reversed by yohimbine, theophylline, thioperamide, pindolol, reserpine, and 4-chloro-DL-phenylalanine methyl ester hydrochloride; and of AEBP was inhibited by naloxone, haloperidol, yohimbine and reserpine. In conclusion, the antinociceptive activity of those extracts possibly involved the activation of several pain receptors (i.e. opioids, muscarinic, ${\alpha}_2$-adrenergic and adenosine receptors, adenosine, H3-histaminergic and $5HT_{1A}$, dopaminergic receptors).

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • 제18권2호
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.