• 제목/요약/키워드: Adenine sulphate

검색결과 10건 처리시간 0.031초

Correlative Effect of Adenine Sulphate and Benzylaminopurine on the Regeneration Potentialily in Cotyledonary Explants of Groundnut (Arachis hypogaea L.)

  • Palanivel, S.;Jayabalan, N.
    • Journal of Plant Biotechnology
    • /
    • 제2권1호
    • /
    • pp.21-24
    • /
    • 2000
  • An efficient method of shoot regeneration of peanut is described. In vitro shoot organogenesis from the callus of cotyledon explants of Arachis hypogaea L. was stimulated by addition of Adenine sulphate (Ads) along with 6 - benzylaminopurine (BAP) and - napthalene acetic acid (NAA). Ads (13 ${\mu}{\textrm}{m}$) had a stimulatory effect on shoot bud differentiation when combined with BAP (13 ${\mu}{\textrm}{m}$) and NAA (2 ${\mu}{\textrm}{m}$). Shoot organogenesis was markedly higher (92%) from callus induced on Ads, BAP and NAA combined media than from those formed by the individual supplementation of Ads or BAP with NAA. The shoots elongated on the media with GA$_3$ (1 ${\mu}{\textrm}{m}$). Elongated plantlets rooted with MS media containing IBA (9 ${\mu}{\textrm}{m}$).

  • PDF

Improvement in Clonal Propagation of Hemidesmus indicus R. Br. through Adenine Sulphate

  • Misra Neeta;Misra Pratibha;Datta S.K.;Mehrotra Shanta
    • Journal of Plant Biotechnology
    • /
    • 제5권4호
    • /
    • pp.239-244
    • /
    • 2003
  • A protocol has been developed for rapid large scale clonal propagation of an aromatic endangered medicinal plant, Hemidesmus indicus R. Br. with the elimination of the problems such as premature leaf fall and callus formation during caulogenesis and rhizogenesis. Multiple shoots were induced from shoot tip and nodal explants on Murashige and Skoog (MS) medium supplemented with 1 mg/L Benzylaminopurine (BAP) and 0.5 mg/L Napthaleneaceticacid (NAA). Addition of 15 mg/L adenine sulphate to the above medium checked leaf abscission completely, reduced the time required for caulogenesis and restored morphogenetic potential after several subcultures. The in vitro grown propagules were rooted in 1/2 MS medium supplemented with 2 mg/L Indolebutyric acid (IBA) +1 mg/L NAA and sucrose 0.7% (w/v). Addition of charcoal at 100 mg/L to the rooting medium quickened root initiation with a complete check on callus formation. The effect of sucrose concentration on both caulogenesis and rhizogenesis was also studied. The resultant plantlets were acclimatized and grown in fields where ninety eight percent of the rooted shoots survived and grew normally. The estimation of the secondary metabolite content in the shoots of the regenerated plant and the mother plant indicated that the concentration of the three secondary metabolites lupeol, vanillin and rutin was similar.

High Frequency Induction of Multiple Shoots from Nodal Explants of Vitex negundo L. Using Sodium Sulphate

  • Chandramu C.;Rao D. Manohar;Reddy V. Dashavantha
    • Journal of Plant Biotechnology
    • /
    • 제5권2호
    • /
    • pp.107-113
    • /
    • 2003
  • The effect of sodium sulphate on shoot induction and multiple shoot formation from nodal explants of Vitex negundo L. was tested on Murashige and Skoog's (MS) medium fortified with different auxins, cytokinins and sucrose. Highest percentage $(97.78\%)$ of explants for shoot induction and multiple shoot (20.68/explant) production were observed in the combination treatment of $N^6-Benzyl$ adenine (BA) $(17.80\;{\mu}M/L)$, ${\alpha}-Naphthalene$ acetic acid (NAA) $(2.15\;{\mu}M/L)$ and $5\%$ sucrose supplemented with 100 mg/L sodium sulphate. In vitro raised shoots were rooted on the half-strength MS medium fortified with different concentrations of NAA, Indole-3-acetic acid (IAA), and Indole-3-butyric acid (IBA) alone and in combinations. Among the treatments, $4.90\;{\mu}M/L$ of IBA was found most effective $(95.56\%)$ in inducing roots. The rooted plantlets were shifted to glasshouse for acclimatization and later transferred to the field with cent percent survival. Furthermore, in vitro flowering was observed in the shoots cultured on MS medium supplemented with BA $(8.90\;{mu}M/L)$ and NAA $(1.61\;{\mu}M/L)$.

An Efficient Plant Regeneration System for Sorghum bicolor - a Valuable Major Cereal Crop

  • Baskaran P.;Jayabalan N.
    • Journal of Plant Biotechnology
    • /
    • 제7권4호
    • /
    • pp.247-257
    • /
    • 2005
  • An efficient, rapid and large-scale in vitro clonal propagation of agronomically important Indian cereal crop genotypes (NSH27 & K5) of Sorghum bicolor (L.) Moench. by enhanced shoot proliferation in shoot tip segments was designed. MS medium fortified with plant growth regulators and coconut water markedly influenced in vitro propagation of Sorghum bicolor. In vitro plantlet production system has been investigated on Murashige and Skoog (MS) medium with the synergistic combination of 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), 5% coconut water and 3% sucrose which promoted the maximum number of shoots as well as beneficial shoot length. Subculturing of shoot tip segments on a similar medium enabled continuous production of more than 100 healthy shoots with similar frequency. When the healthy shoot clumps were cultured on MS medium fortified with 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), ${\alpha}$-naphthaleneacetic acid ($2.7\;{\mu}M$), ascorbic acid ($30.0\;{\mu}M$) and 5% coconut water, a rapid production of axillary and adventitious buds was developed after 8 wk culture. More than 300 shoots were produced 10 wk after culture. Rooting was highest (100%) on half strength MS medium containing 22.8 mM IAA. Micropropagated plants established in garden soil, farmyard soil and sand (2:1:1) were uniform and identical to the donor plant with respect to growth characteristics. These plants grew normally without showing any traits.

Silver nitrate and silver-thiosulphate mitigates callus and leaf abscission during Shisham clonal micro-propagation

  • Raturi, Manoj Kumar;Thakur, Ajay
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.173-178
    • /
    • 2021
  • Basal callus formation and leaf abscission is a problem in clonal micropropagation. We have described an in vitro clonal propagation protocol of Dalbergia sissoo Roxb (shisham) 'FRI-14' in which AgNO3 played important role not only in mitigating problem of leaf abscission and basal callus, but also improved shoot induction and multiplication. Best induction and shoot multiplication was obtained on MS media with 1.5 mg/l 6-BAP and 10 mg/l AgNO3 and half-strength MS media with 0.5 mg/l 6-BAP, 2 mg/l AgNO3 and 50 mg/l Adenine sulphate whereas best ex vitro rooting was obtained with 200 mg/l IBA in pulse treatment.

In vitro Propagation and Ex vitro Rooting of Tectona grandis (L.f ), APNBV-1 Clone

  • Ramesh, Kommalapati;Chandra, Mouli Kalla;Vijaya, Tartte
    • Journal of Forest and Environmental Science
    • /
    • 제25권2호
    • /
    • pp.119-126
    • /
    • 2009
  • An efficient in vitro plant regeneration system was developed through shoot proliferation from axillary buds of Tectona grandis (L.f), APNBV-1 (Andhra Pradesh North Badrachalam Venkatapuram-1) clone. Multiple shoots of high quality were produced in vitro from axillary bud explants. An average of 4.39 shoots/explant were obtained on Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) benzyl amino purine (BA), kinetin (KN), indole acetic acid (IAA), gibberillic acid ($GA_3$), growth adjuvants casein hydrolysate (CH), adenine sulphate (Ads) and antioxidants ascorbic acid, polyvinyl pyrrollidine (PVP). Eighty five percent of rooting was observed in ex vitro rooting media containing IBA and vermiculite. In ex vitro rooting, single shoots with 2 to 3 nodes were subjected to IBA of different concentrations at different periods of time intervals. Direct rooting in vermiculite at 500 ppm concentration of IBA resulted in 4.3 number of roots with 2 cm length. Minimum response of rooting and length of roots were recorded at 100 ppm concentration of IBA. Planlets were transferred to plastic bags for short acclimatization stage in green house where they survived at 95%.

  • PDF

In Vitro Regeneration of Pongamia pinnata Pierre

  • Sujatha, K.;Hazra, Sulekha
    • Journal of Plant Biotechnology
    • /
    • 제33권4호
    • /
    • pp.263-270
    • /
    • 2006
  • Pongamia pinnata Pierre is a tree legume, having potential in production of raw material for biodiesel. A protocol for in wk propagation of this plant was standardized using seedling explants. Growth regulators (GR) including gibberellic acid $(GA_3),\;N^6-benzylaminopurine(BA)$, thidiazuron (TDZ), and Adenine sulphate (Ads) were tested for optimum germination of seeds. Removal of seed coat prior to germination, controlled fungal growth partially but enhanced bacterial growth. Antibiotic cefotaxime was ineffective in controlling bacterial contamination. Seedling derived nodal explants and cotyledon nodes with attached cotyledons were excised and cultured for induction of shoots. Optimum sprouting and multiplication of shoot buds were obtained in MS medium supplemented with $8.88{\mu}M$ BA. These buds differentiated and rooted on medium devoid of GR. Optimum growth of Pongamia seedling was obtained in cotton plugged culture vessels. Reculturing of the cotyledon node explants produced more shoots from the same site. This process of removing shoots and reculturing of cotyledon node was followed for eight passages yielding 4 to 8 shoots in each cycle. The shoots (75%) rooted on half strength MS basal medium supplemented with 0.22% charcoal. All plants survived on transfer to soil. This is the first report on in vitro regeneration of Pongamia pinnata. This report demonstrates the possibility of coupling more than one parameter in single experiment to hasten the process of standardization. The process of cycling the nodal explant repeatedly for production of large number of shoots from single meristem may find application in genetic transformation experiments wherein meristems are used for transformation.

In vitro Multiplication of Haloxylon recurvum (Moq.) - a Plant for Saline Soil Reclamation

  • Dagla Harchand R.;Shekhawat N.S.
    • Journal of Plant Biotechnology
    • /
    • 제7권3호
    • /
    • pp.155-160
    • /
    • 2005
  • Haloxylon recurvum (Locally known as Khar) is drought and salt tolerant plant of Thar Desert. This plant is a major biomass producer and has economic and ecological importance for the region. There is need for study on biology, propagation and genetic improvement for utilization of this plant for reclamation of saline soils. We report here on in vitro propagation of Haloxylon recurvum (Moq.) using nodal explant. Secretion of phenolic compound from explants was a major constraint for establishment of culture. This was checked by thorough washing and quick transfer of explant on fresh culture medium. Juvenile nodal explant with leaves was found suitable for culture establishment. Benzy-ladenine($4.0\;{\mu}M$) incorporated in Murashige and Skoog (MS) medium with additives (50 mg/L ascorbic acid and 25 mg/L each of adenine sulphate, arginine and citric acid) induced multiple shoots from nodal explant. Addition of $1.0\;{\mu}M$ naphthalene acetic acid (NAA) in combination with $4.0\;{\mu}M$ BAP improved the growth of axillary shoots. Further shoot amplification was achieved by repeated subculture of mother explants on fresh medium. Forty percent of the micropropagated shoots rooted on half-strength MS medium with $4.0\;{\mu}M$ indolebutyric acid (IBA) and 100 mg/L activated charcoal, at $28{\pm}2^{\circ}C$ and $60\%$ RH. Sixty percent of these plantlets were hardened in green house.

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume

  • Choudhary, Kailash;Singh, M.;Rathore, M.S.;Shekhawat, N.S.
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.205-211
    • /
    • 2009
  • An efficient in vitro regeneration protocol for moth bean [Vigna aconitifolia (Jacq.) Marechal] via somatic embryogenesis has been developed. Embryogenic callus cultures were established from the cotyledonary node as explant on semi-solid Murashige and Skoog (MS) medium supplemented with $0.75mg\;1^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D) and $1.5mg\;1^{-1}$ 6-benzylaminopurine (BA) and with various additives ($50mg\;1^{-1}$ ascorbic acid and $25mg\;1^{-1}$ each of adenine sulphate, citric acid and $_L-arginine$). Numerous somatic embryos differentiated on MS basal nutrient medium supplemented with $0.25mg\;1^{-1}$ 2,4-D and $0.5mg\;1^{-1}$ of kinetin (Kin). Sustained cell division resulted in the formation of cell aggregates, which progressed to the globular- and heart-shaped somatic embryos and then, if they differentiated properly, to the torpedo shape and cotyledonary stages. The transfer of embryos onto fresh MS basal medium containing $0.2mg\;1^{-1}$ BA and $2.0mg\;1^{-1}$ gibberellic acid enabled the embryos to achieve complete maturation and germination. More than 80% of somatic embryos were converted into true-to-type fertile plants. In vitro-regenerated plantlets with well-developed roots were successfully hardened in a greenhouse and established in soil.