• Title/Summary/Keyword: Adducts

Search Result 270, Processing Time 0.025 seconds

Association of PAH-DNA adducts and Urinary PAH metabolites influenced by polymorphisms of xenobiotic metabolism enzymes in industrial wase incinerating workers (산업폐기물 소각장 근로자에서 요중 PAHs 대사산물과 혈중 aromatic-DNA adducts)

  • ;Masayoshi Ichiba
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.303-311
    • /
    • 2002
  • This study evaluated the concentrations of urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) in industrial waste incineration workers. The effect of genetic polymorphisms of xenobiotic metabolism enzymes on urinary concentration of PAH metabolites was assessed. And, aromatic DNA adduct levels were also determined in total white blood cells. Fifty employees were recruited from a company handling industrial wastes located in Ansan, Korea: non-exposed group (n=21), exposed group (n=29). Sixteen ambient PAHs were determined by GC/MSD (NIOSH method) from personal breathing zone samples of nine subjects near incinerators. Urinary 1-hydroxypyrene glucuronide (1-OHPG), a major pyrene metabolite, was assayed by synchronous fluorescence spectroscopy after immunoaffinity purification using monoclonal antibody 8E11 (SFS/IAC). Multiplex PCR was used for genotyping for GSTMI/TI and PCR-RFLP for genotyping of CYP1A1 (MspI and Ile/Val). PAH-DNA adducts in peripheral blood WBC were measured by the nuclease P1-enhanced postlabeling assay. Smoking habit, demographic and occupational information were collected by self-administered questionnaire. The range of total ambient PAH levels were 0.00-7.00 mg/㎥ (mean 3.31). Urinary 1-OHPG levels were significantly higher in workers handling industrial wastes than in those with presumed lower exposure to PAHs (p=0.006, by Kruskal-Wallis test). There was a statistically significant dose-response increase in 1-OHPG levels with the number of cigarettes consumed per day (Pearson correlation coefficient=0.686, p<0.001). Urinary 1-OHPG levels in occupationally exposed smoking workers were highest compared with non-occupationally exposed smokers (p=0.053, by Kruskal-Wallis test). Smoking and GSTMI genotype were significant predictors for log-transformed 1-OHPG by multiple regression analysis (overall model R²=0.565, p<0.001), whereas smoking was the only significant predictor for log-transformed aromatic DNA adducts (overall model R²=0.249, p=0.201). Aromatic DNA adducts was also a significantly correlation between log transferred urinary 1-OHPG levels (pearson's correlation coefficient=0.307, p=0.04). However, the partial correlation coefficient adjusting for Age, Sex, and cigarette consumption was not significant (r=0.154, p=0.169). The significant association exists only in individuals with the GSTMI null genotype (pearsons correlation coefficient=0.516, p=0.010; partial correlation coefficient adjusting for age, sex, and cigarette consumption, r=0.363, p=0.038). Our results suggest that the significant increase in urinary 1-OHPG in the exposed workers is due to higher prevalence of smokers among them, and that the association between urinary PAH metabolites and aromatic DNA adducts in workers of industrial waste handling may be modulated by GSTMI genotype. There results remain to be confirmed in future larger studies.

  • PDF

Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl)

  • Yagi, kashi;Fujikawa, Yoshihiro;Sawai, Tomoko;Takamura-Enya, Takeji;Ito-Harashima, Sayoko;Kawanishi, Masanobu
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the $N^2$ or C8 positions of guanine or the $N^6$ position of adenine. The proportion of $N^2$ and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol ${\eta}$, ${\kappa}$, ${\iota}$, and ${\zeta}$ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxyguanosin-$N^2$-yl)-3-aminobenzanthrone (dG-$N^2$-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-$N^2$-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-$N^2$-ABA. dG-$N^2$-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol ${\eta}$ and ${\kappa}$ are stronger contributors to TLS over dG-C8-ABA, and Pol ${\kappa}$ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.

Synthesis and Characterization of Oligonucleotides Containing Site-Specific Bulky $N^2$-Aralkylated Guanines and $N^6$-Aralkylated Adenines

  • Moon, Ki-Young;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • 7- Bromomethylbenz[a]anthracene is a known mutagen and carcinogen. The two major DNA adducts produced by this carcinogen, i.e., $N^2$-(benz[a]anthracen-7-yl methyl)-2'-deoxyguanosine (2, b[a]$a^2$G) and $N^6$-(benz[a]anthracen-7-ylmethyl)-2'-deoxyadenosine (4, b[a]$a^6$/A), as wel 1 as the simpler benzylated analogs,$N^2$-benzyl-2'deoxyguanosine (1, $bn^2$G) and $N^6$-benzyl-2'-deoxyadenosine (3, $bn^6$/A), were prepared by direct aralkylation of 2'-deoxyguanosine and 2'-deoxyadenosine. To determine the site-specific mutagenicity of these bulky exocyclic amino-substituted adducts, the suitably protected nucleosides were incorporated into 16-base oligodeoxyribonucleotides in place of a normal guanine or adenine residues which respectively are part of the ATG initiation codon for the lac Z' \alpha-complementation gene by using an in situ activation approach and automated phosphite triester synthetic methods. The base composition and the incorporation of the bulky adducts into synthetic oligonucleotides were characterized after purification of the modified oligonucleotides by enzymatic digestion and HPLC analysis.

  • PDF

A Critical Evaluation of DNA Adducts as Biological Markers for Human Exposure to Polycyclic Aromatic Compounds

  • Godschalk, Roger W.L.;Van Schooten, Frederik-Jan;Bartsch, Helmut
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention of chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria:i.adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined.iii. sources of inter- and intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAH-exposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with non-exposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intra-individual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurement may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. Biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurement as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.

Metabolism of Safrole, a Betel Quid Component, and its Role in the Development of Oral Cancer in Taiwan

  • Liu, Tsung-Yun;Chen, Chiu-Lan;Chung, Yu-Ting;Chi, Chin-Wen
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.139-144
    • /
    • 2001
  • Chewing betel quid is associated with an increased risk of oral cancer. The betel quid chewed in Taiwan includes the inflorescence of Piper betle, which contains high concentrations of safrole (15 mg/fresh weight). Piper betle leaf is also used in betel quid; however, the concentration of safrole in betel leaf has not been documented. Chewing betel quid may contribute to safrole exposure in man (420 mm in saliva). Using $a^{32}$P-postlabeling method, we have recently demonstrated the presence of stable safrole-like DNA adducts in human oral tissues following betel quid chewing. Safrole is a rodent hepatocar-cinogen, and the real nature of safrole-DNA adducts in human tissues beside oral has not been elucidated. In this paper, we tested the safrole DNA adducts forming potential in human hepatic and oral derived cells by the ${32}^P$-postlabeling technique. The results suggest that oral cancer derived cell OC-2 alone is not able to form safrole-DNA adduct. However, safrole DNA adducts can be detected following I'-hydroxysafrole, a proximate safrole metabolite, treatment. In addition, pretreament of cytochrome P450 inducers also enhanced the formation of previously undetectable safrole DNA adducts. This finding couples with our previous results suggest that oral may serve as a target tissue for safrole, and safrole may be involved in oral carcinogenesis.

  • PDF

Regioselective 1,3-Dipolar Cycloaddition and 1,2-Addition between Benzaldoxime NH-nitrone and Perfluoro-2-methyl-2-pentene

  • Lee, Chan-Woo;Park, Joo-Yuen;Kim, Hyun-Uk;Chi, Ki-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1172-1176
    • /
    • 2010
  • Regioselective perfluorinated [3+2] cycloadducts and 1,2-adducts have been prepared by 1,3-dipolar cycloaddition between benzaldoxime NH-nitrone and perfluorinated alkene, perfluoro-2-methyl-2-pentene. Although the cycloaddition reaction is carried out at room temperature, the corresponding perfluorinated compounds are effectively produced in a high yield. In particular, the methoxy-substituted adducts (4 and 7a) show the self-assembled structure by intermolecular interactions. These derivatives were characterized by IR, $^1H$ and $^{19}F$ NMR, and the absolute structure of perfluorinated adducts was confirmed by X-ray crystallography.

Synthesis of Arene-Fused Isoindoline Derivatives from Morita-Baylis-Hillman Adducts by IMDA Reaction Using Z-Vinylarenes as 1,3-Dienes

  • Kim, Ko Hoon;Lim, Jin Woo;Moon, Hye Ran;Kim, Jae Nyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3254-3260
    • /
    • 2014
  • Intramolecular Diels-Alder (IMDA) reaction of vinylarenes bearing a Z-alkenyl tether, prepared from Morita-Baylis-Hillman (MBH) adducts, afforded arene-fused isoindoline derivatives in good yields. Vinylfurans, vinylthiophenes, and vinylnaphthalenes could be used successfully as dienes, while vinylbenzene failed under the same reaction conditions.