• Title/Summary/Keyword: Additional strain

Search Result 333, Processing Time 0.025 seconds

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Influence of strain rate on the acoustic emission signal characteristics in corrosive environment (부식환경하에서 음향방출신호 특성에 미치는 변형률속도의 영향)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.12-21
    • /
    • 1995
  • The study was performed to study the effects of strain rate on acoustics emission( AE) during bulging test in corrosive environmentsynthetic sea water. The strain rates used were in the range $4 \times 10^{-6}S^{-1}$ to $1 \times 10^{-4} \times S^{-1}$ and the parameters used to evaluate AE signal characteristics were AE hit and amplitude. It can be observed that the cumulative AE hit and average amplitude during fracture process increase highly at decreasing strain rates while the equivalent fracture strain and the crack length of circumferencial direction become decrease. The peak point of AE signal characteristic parameters approach to the first half of test. When the average amplitude per unit equivalent fracture strain was above 20dB, it was definitly observed stress corrosion cracking phenomena. Additional, we knew that the AE test had the possibility to evaluate SCC susceptibility with various strain rates.

  • PDF

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.

Job stress and reaction of dental hygienist by using the job strain model (직무긴장 모형을 이용한 치과위생사의 직무스트레스와 반응)

  • Choi, Mi-Suk;Ahn, Kwon-Suk
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.4
    • /
    • pp.595-605
    • /
    • 2010
  • Objectives : A precedent research has documented that occupational stress is closely associated with increased the risk of fatigue and decreased in job satisfaction. This study was conducted in an effort to assess the relationship of occupational stress to self-perceived fatigue and job satisfaction by using job strain model. Methods : The number of respondents was 122 dental hygienist who work in dental clinic and period of the investigation was July 2009 through september 2009. A structured questionnaire was employed to evaluate the participants' sociodemographics, job-related factors, health-related behaviors, occupational stress, job satisfaction and self-perceived fatigue. Occupational stress and self-perceived fatigue were assessed using the Korean Occupational Stress Scale-Short form (KOSS-SF) and the Multidimensional Fatigue Scale (MFS), respectively. Results : In job strain model, the ratio of Q2(High Strain Job) group that more susceptible to disease by stress than other group was 16% and the proportion of high fatigue group(Q3, Q4 group) and low job satisfaction group(Q3, Q4 group) was 48%, 45% respectively. In logistic regression analyses, a High Strain Job group was associated with higher odds of react factor(fatigue, job satisfaction) and the odds was down by 3.3%~7.5% after adjustment for age, smoking, alcohol drinking, regular exercise. So the effective strategy for fatigue, job satisfaction reduction for dental hygienist requires additional program focusing on innovated work environment that provide a enough leisure time and exercise program considering the personality traits. Conclusions : The results of this study suggest that occupational stress is a determinant predictor of self perceived fatigue and job satisfaction. Thus, a stress management program for the reduction of occupational stress, and the promotion of dental hygienist impact assessment health and quality of life is strongly recommended.

A Study on Flame Extinction in Oxymethane Combustion (메탄 산소 연소에 있어서 화염 소화에 대한 연구)

  • Kim, Tae Hyung;Kwon, Oh Boong;Park, Jeong;Keel, Sang-In;Yun, Jin-Han;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.34-41
    • /
    • 2015
  • Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.

Shear Strengthening Effect of RC Beams with FRP Sheets with respect to Shear Reinforcement Ration (전단보강비에 따른 FRP 쉬트의 전단보강성능)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.68-71
    • /
    • 2004
  • In the shear strengthening with FRP sheets, beams are wrapped around the webs and tension face of critical shear span by fiber sheets. The shear strength of RC beam strengthened with FRP sheets must be calculated based on the effective strain that can be developed in the FRP sheets at ultimate stage because the final failure modes of beams are governed by premature debonding of FRP sheet due to the limitation of bonded length by beam depth. An experimental study is carried out to evaluate the shear strengthening effect of AFRP or GFRP sheets with respect to shear reinforcement ratio of rebar. From the test results, it was found that the additional shear strength provided by GFRP or AFRP can be estimated by $p_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet $4,000m{\mu}$ proposed by ACI 440 committee.

  • PDF

Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli

  • Lee, Hyejin;Kim, Bong Gyu;Kim, Mihyang;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1442-1448
    • /
    • 2015
  • The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli. After optimization of different combinations of constructs, the yield of apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 mg/l genkwanin.

Numerical analysis of Brazilian split test on concrete cylinder

  • Wosatko, Adam;Winnicki, Andrzej;Pamin, Jerzy
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.243-278
    • /
    • 2011
  • The paper presents simulations of the Brazilian test using two numerical models. Both models are regularized in order to obtain results independent of discretization. The first one, called gradient damage, is refined by additional averaging equation which contains gradient terms and an internal length scale as localization limiter. In the second one, called viscoplastic consistency model, the yield function depends on the viscoplastic strain rate. In this model regularization properties are governed by the assumed strain rate. The two models are implemented in the FEAP finite element package and compared in this paper. Parameter studies of the split test are performed in order to point out the features of each model.

Prediction and Evaluation of Rubber Components using Large Deformation Non-linear Finite Element Analysis (비선형 대변형 유한요소해석을 이용한 방진고무부품의 특성예측 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Cho, Seong-Do-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.286-291
    • /
    • 2000
  • The finite element analyses of mechanical rubber components are executed to predict the behavior of deformation and stress distribution in destgn step. The non-linear properties of rubber which are described as strain energy functions are important parameters to design and evaluate rubber components. These are determined by material tests which are tension, compression and shear test. The behaviors of loads-displacements of rubber components such as a roll tubber spring and resilient ring and additional spring for railway suspension system are evaluated by using commercial FEA code. It is shown that the results by FEA simulations are in close agreement with the test results.

  • PDF