• Title/Summary/Keyword: Additional element

Search Result 687, Processing Time 0.023 seconds

Wave-Front Error Reconstruction Algorithm Using Moving Least-Squares Approximation (이동 최소제곱 근사법을 이용한 파면오차 계산 알고리즘)

  • Yeon, Jeoung-Heum;Kang, Gum-Sil;Youn, Heong-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.359-365
    • /
    • 2006
  • Wave-front error(WFE) is the main parameter that determines the optical performance of the opto-mechanical system. In the development of opto-mechanics, WFE due to the main loading conditions are set to the important specifications. The deformation of the optical surface can be exactly calculated thanks to the evolution of numerical methods such as the finite element method(FEM). To calculate WFE from the deformation results of FEM, another approximation of the optical surface deformation is required. It needs to construct additional grid or element mesh. To construct additional mesh is troublesomeand leads to transformation error. In this work, the moving least-squares approximation is used to reconstruct wave front error It has the advantage of accurate approximation with only nodal data. There is no need to construct additional mesh for approximation. The proposed method is applied to the examples of GOCI scan mirror in various loading conditions. The validity is demonstrated through examples.

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

S.D.O.F Macro-element for Interaction of Deep Foundation (단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델)

  • Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • In this paper single degree of freedom macro-element model was presented to investigate the interaction between soil and the deep foundation under the lateral loads. It was made by modelling each component related to the soil-structure interaction and combining them into one piece. It enhanced the conventional method that was not able to break down the interaction components in piece due to the usage of simple spring element for interaction. A proposed macro-element classified the stress components in relation to the interaction into frictional and compressive resistance. Each component was modelled using the classical plasticity theory, and finally combined in parallel. An example study was carried out using the proposed macro-element for deep foundation embedded in three layered cohesive soil. It showed improved results compared to the conventional method by producing additional information of the interaction components as well as the overall behavior of foundation.

A weld-distortion analysis method of the shell structures using ultra structural FE model (초대형 구조모델을 활용한 쉘구조물의 용접변형 해석)

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

Improvement of Control Characteristics of Permanent Magnet Linear Synchronous Motor by Finite Element Analysis (유한요소 해석에 의한 영구자석형 선형 동기전동기의 제어특성 개선)

  • 정인성;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.318-324
    • /
    • 1999
  • In this paper. a control method based on finite element analysis is presented to improve the control characteristics of t the permanent magnet linear synchronous motor (PMLSM). In the control method. additional compensation current is a added to the conventional control current according to the position of mover. The characteristics of thrust ripple a according to the position of mover and the current are analyzed by using finite element method (FEM). And. the value of current to compensate the thrust ripple due to the cog밍ng force is calculated from the analysis results. The c characteristics according to control method are compared in case of speed control. and to conform the validity of the p presented method, a test set is built and experiments are performed.

  • PDF

Comparison of Dynamic Elements Matching Method in the Delta-Sigma Modulators (Dynamic Element Matching을 통한 Multi-bit Delta-Sigma Modulator에서의 DAC Error 감소 방안 비교)

  • Hyun, Deok-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.104-110
    • /
    • 2006
  • The advantage of the DSM which employ multi-bit quantizer is the increased SNR at the modulator's output. Typically 6 dB improvement is effected for every one additional bit. But multi-bit quantizer evidently requires multi-bit DAC in the feedback loop. The integral linearity error of the feedback DAC has direct impact upon the system performance and degraded SNR of the system. In order to mitigate the negative impact the DAC has on the system performance, many DEM(Dynamic Element Matching) schemes has been proposed. Among the proposed schemes, four schemes(DER,CLA,ILA,DWA) are explained and its performance has been compared. DWA(Data Weighted Averaging) method shows the best performance of the all.

A Study on Sigma Delta ADC using Dynamic Element Matching (Dynamic Element Matching을 적용한 Sigma Delta ADC에 관한 연구)

  • Kim, Hwa-Young;Ryu, Jang-Woo;Lee, Young-Hee;Sung, Man-Young;Kim, Gyu-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1222-1225
    • /
    • 2004
  • This paper presents multibit Sigma-Delta ADC using noise-shaped dynamic element matching(DEM). 5-bit flash ADC for multibit quantization in Sigma Delta modulator offers the following advantages such as lower quantization noise, more accurate white-noise level and more stability over single quantization. For the feedback paths consisting of DAC, the DAC element should have a high matching requirement in order to maintain the linearity performance which can be obtained by the modulator with a multibit quantizer. The DEM algorithm is implemented in such a way as to minimize additional delay within the feedback loop of the modulator Using this algorithm, distortion spectra from DAC linearity errors are shaped. Sigma Delta ADC achieves 82dB signal to noise ratio over 615H7z bandwidth, and 62mW power dissipation at a sampling frequency of 19.6MHz. This Sigma Delta ADC is designed to use 0.25um CMOS technology with 2.5V supply voltage and verified by HSPICE simulation.

  • PDF

Application of Channel Routing Model by Taylor-Galerkin Finite Element Method -Modeling of Flow in Flood- (테일러-갤러킨 유한요소법에 의한 하도추적 모형의 적용 -홍수시 하천 유량 모의-)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.404-410
    • /
    • 2011
  • For the simulation of one-dimensional unsteady flow, the Taylor-Galerkin finite element method was adopted to the discretization of the Saint Venant equation. The model was applied to the backwater problem in a single channel and the flood routing in dendritic channel networks. The numerical solutions were compared with previously published results of finite difference and finite element methods and good agreement was observed. The model solves the continuity and the momentum equations in a sequential manner and this leads to easy implementation. Since the final system of matrix is tri-diagonal with a few additional entry due to channel junctions, the tri-diagonal matrix solution algorithm can be used with minor modification. So it is fast and economical in terms of memory for storing matrices.

A Study on Characteristic of Consumer and Clothing Purchase Orientations according to Internet Shopping Mall Type (인터넷 쇼핑몰 유형에 따른 소비자 특성 및 의복구매성향에 관한 연구)

  • 박옥련;정유정;이현지
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.2
    • /
    • pp.292-302
    • /
    • 2002
  • The purpose of this study was to research on Characteristic of Consumer and Clothing Purchase Orientations according to Internet Shopping Mall Type. The results were as follows; First, the clothing purchase orientations consisted of 5 dimension; product recondition, consumer service, shopping experience, risk of functional recognition, and of economical recognition. Second, the analysis of items of 5 dimension on clothing purchase orientations according to Internet shopping mall type produced as follows; 1. Product recognition - Variety of products appeared to be important elements and the average of specialized shopping mall was higher than that of general shopping mall. 2. Consumer service - Reliability of product information appeared to be more critical than others and the average of specialized shopping mall was bigger than that of others 3. Shopping experience - The item of convenience over time and space, the hard sell and over-service were found critical elements. Especially convenience over time of Mall of Malls, the convenience a far from hard sell element of department style shopping mall, and convenience over space of specialized mall were higher than that of others. 4. Risk element of functional recognition - No specific distinction appeared according to shopping mall type. 5. Risk element of economical recognition - Mending and additional cost arising from bad choice were found being critical element.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.