• Title/Summary/Keyword: Additional Damage

Search Result 528, Processing Time 0.029 seconds

Experimental Evaluation of the Seismic Performance and Engineering Damage State of Reinforced Concrete Columns (철근콘크리트 기둥의 내진성능 및 공학적 손상상태에 대한 실험적 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.119-127
    • /
    • 2023
  • In this paper, seismic performance evaluation was carried out for eight circular reinforced concrete columns designed seismically by KRTA[1]and KCI[8]. Primary design parameters for such columns included many longitudinal reinforcements, yield strength of reinforcements, the vertical spacing of spirals, aspect ratio, and axial force ratio. The test results showed that all the columns exhibited stable hysteretic and inelastic responses. Based on the test results, drift ratios corresponding to each damage state, such as initial yielding, initial cover spalling, initial core concrete crushing, buckling, and fracture of longitudinal reinforcement and final spalled region, were evaluated. Then, those ratios were compared with widely accepted damage limit states. The comparison revealed that the existing damage states were considerably conservative. This implies that additional research is required for the damage limit states of such columns designed seismically by current Korean design codes.

Establishment of Matlab-based MCDA Interactive Model for the Sensitivity of the Preferred Alternatives to the Number of Criteria (Matlab기반의 다중의사결정 기준 변화에 따른 민감도 분석)

  • Lim, Kwang-Suop;Lee, Dong-Ryul;Lee, Chang-Hae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.297-301
    • /
    • 2009
  • The impact of adding additional Multi-Criteria Decision Analysis (MCDA) criteria is demonstrated because current research shows MCDA for flood damage has been applied using only a few criteria but for better results the MCDA approach needs to apply more criteria for evaluating the alternatives. By adding additional criteria into MCDA, the capability to make the best alternatives more diverse and show the decision maker more differences in the scores of the alternatives to allow the decision maker to discriminate is significantly improved. The target region for a demonstration application of the methodology was the Suyoung River Basin in Korea. The 1991 Gladys flood event and five different return periods were used as a case study to demonstrate the proposed methodology of evaluation of various flood damage reduction alternatives.

  • PDF

SYNERGISTIC INTERACTION OF ENVIRONMENTAL TEMPERATURE AND MICROWAVES: PREDICTION AND OPTIMIZATION

  • Petin, Vladislav G.;Kim, Jin-Kyu;Kolganova, Olga I.;Zhavoronkov, Leonid P.
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • A simple mathematical model of simultaneous combined action of environmental agents has been proposed to describe the synergistic interaction of microwave and high ambient temperature treatment on animal heating. The model suggests that the synergism is caused by the additional effective damage arising from an interaction of sublesions induced by each agent. These sublesions are considered to be ineffective if each agent is taken individually. The additional damage results in a higher body temperature increment when compared with that expected for an independent action of each agent. The model was adjusted to describe the synergistic interaction, to determine its greatest value and the condition under which it can be achieved. The prediction of the model was shown to be consistent with experimental data on rabbit heating. The model appears to be appropriate and the conclusions are valid.

A Special Pre-Service-Inspection Using Radiographic Testing(RT) for Brazing Fitting Uused in Aircraft Hydraulic System

  • Kim, Gyu-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.271-281
    • /
    • 2010
  • Brazing fitting which is one of the aircraft hydraulic power system components is widely used for saving weight and achieving higher reliability. Any inherent defects or damage of fitting can cause system failure and/or physical damage of human body due to highly pressurized fluid. Radiographic testing(RT) technique and additional micro-structure investigation on cut-away surfaces have been accomplished to find out some defect-like-inhomogeneity in the fittings. The radiography results showed that some defect-like-inhomogeneity existed inside body. Additional micro-structure investigation on cut-away surface reveals that the inhomogeneity is due to internal voids. In this study, it can be is said that RT technique can be a useful tool for field acceptance test of hydraulic brazing fitting in short time.

Development of a Temporary Pole Supporting System to Protect the Plastic Greenhouses from Heavy Snow Damage (플라스틱 온실의 폭설피해 방지를 위한 가지주 장치 개발)

  • Nam, Sang-Woon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.107-113
    • /
    • 2002
  • The pipe framed and arch shape plastic greenhouse, which is the most popular greenhouse in Korea, is relatively weak in snowdrift. Reinforcement of rigid frame or column is required to reduce the damage from heavy snow in this type. But additional rigid frames or columns decrease light transmissivity or workability, and increase construction cost. So it is desirable to prepare some temporary poles and to install them when the warning of heavy snow is announced. This study was carried out to develop the temporary pole supporting system using galvanized steel pipes for plastic housing and to evaluate the safe snow load on a temporary pole. A pipe connector, which is inserted in the top of pipe used in the temporary pole and supports the center purline, was designed and manufactured to be able to carry the upper loads safely. And a bearing plate was safely designed and manufactured in order to carry the loads acting on it to the ground. When temporary poles of ${\phi}$ 25 pipe are installed at 2.4m interval, it shows that the single span plastic greenhouses with 5~7 m width are able to support the additional snow depth of 13.9~25.3 cm beyond the snow load supported by main frame.

Study on damage detection software of beam-like structures

  • Xiang, Jiawei;Jiang, Zhansi;Wang, Yanxue;Chen, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.77-91
    • /
    • 2011
  • A simply structural damage detection software is developed to identification damage in beams. According to linear fracture mechanics theory, the localized additional flexibility in damage vicinity can be represented by a lumped parameter element. The damaged beam is modeled by wavelet-based elements to gain the first three frequencies precisely. The first three frequencies influencing functions of damage location and depth are approximated by means of surface-fitting techniques to gain damage detection database of forward problem. Then the first three measured natural frequencies are employed as inputs to solve inverse problem and the intersection of the three frequencies contour lines predict the damage location and depth. The DLL (Dynamic Linkable Library) file of damage detection method is coded by C++ and the corresponding interface of software is coded by virtual instrument software LabVIEW. Finally, the software is tested on beams and shafts in engineering. It is shown that the presented software can be used in actual engineering structures.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Dynamic Behavior of Pier-Type Quay Walls Due to Ground Improvement During Earthquakes (지진 시 지반개량에 따른 잔교식 안벽의 동적 거동)

  • Hyeonsu Yun;Seong-Kyu Yun;Gichun Kang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 2024
  • The 2017 Pohang earthquake caused damage to quay structures due to liquefaction. Liquefaction occurs when effective stress is lost due to an increase in excess pore water pressure during an earthquake. As a result, the damage caused to the pier-type quay wall was identified and the damage caused by liquefaction was analyzed. In addition, in the case of improved ground, damage occurred due to liquefaction of the lower sand layer due to the difference in stiffness from the soft rock layer, so additional numerical analysis was performed assuming non-liquefaction ground. There are several factors that affect the increase in excess pore water pressure ratio, such as the relative density of the ground and the magnitude of the input seismic acceleration. Therefore, this study performed numerical analysis for Cases 1 to 3 by increasing the magnitude of the input acceleration, and in the case of improved ground, damage occurred due to liquefaction of the lower sand layer, so the analysis was performed assuming non-liquefaction ground. As a result, the improved ground requires additional reinforcement when there is liquefied ground below, and the horizontal displacement of the pier-type quay piles was reduced by about two times.

Study on Damage Evaluation Model for Reinforced Concrete Members (철근콘크리트 부재의 손상량 평가 모델에 관한 연구)

  • Cho, Byung Min;Maeda, Masaki;Kim, Taejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • The purpose of this study is to improve the previous damage evaluation model for RC members which is proposed by Igarashi[1] in 2010.The previous model was not confirmed by enough data of damage such as, residual crack length, width and area for exfoliation of concrete, etc. In addition, validation of the model is still insufficient. Therefore, experiment of a real-scale RC structure and experiment of RC columns using the high-strength concrete were conducted to gather the data of damage in RC members. The investigation has been conducted gathering the data not only additional experiments data but also existing data for modification of damage evaluation model. It has been investigated on changing damage in RC due to axial force ratio, shear reinforcement and shear span ratio. As a result, several problems were founded in the previous model, such as, hinge length($l_p$), spacing of flexural crack($S_{av,f}$), total width of flexural cracks regulated by maximum width of flexural crack($n_f$) and total width of shear cracks regulated by maximum width of shear crack($n_s$). New model is proposed and evaluated the damage properly.

Comparative Study for Hair Protection Effect of Hair Essence Prepared Using Human Hair Keratin

  • Lee, Soonhee;Bae, Giyeon;Park, Doohyun;Kim, Sungnam
    • Journal of Fashion Business
    • /
    • v.17 no.3
    • /
    • pp.48-57
    • /
    • 2013
  • This study was performed to quantitatively and qualitatively estimate the effect of keratin essence on hair protection against physicochemical damage. Damaged hairs were obtained from an early thirty woman who dyed her hair two times and did digital permanent treatment of her hair two times. The damaged hairs were divided into four experimental groups, which are the control hair (CH) group without additional beauty treatment, the damaged hair (DH) group by additional dyeing treatment, basic essence-treated hair (BEH) group, and keratin essence-treated hair (KEH) groups according to the research goal. The protection effect of keratin essence against the physicochemical damage was quantitatively compared by difference of chrominance measured using a color difference meter and qualitatively compared by difference of outer morphological structure images pictured using scanning electron microscopy (SEM). The brightness and yellowish blue color of KEH were relatively lower but the reddish blue color was relatively higher than other groups of test hairs. Cuticle structure of the previously DH was irregularly deformed and more strongly deformed or partially broken by additional dyeing treatment. On the other hand, the gaps between cuticle scales of the DH were reformed by treatment with basic essence and reformed and filled by treatment with keratin essence in comparison with the DH group. Conclusively, the keratin essence was effective to protect hair structure against the structural damage induced by the dyeing-treatment, by which the coloring efficiency is thought to be improved.