DOI QR코드

DOI QR Code

Dynamic Behavior of Pier-Type Quay Walls Due to Ground Improvement During Earthquakes

지진 시 지반개량에 따른 잔교식 안벽의 동적 거동

  • Hyeonsu Yun (Department of Civil Engineering, Gyeongsang National University) ;
  • Seong-Kyu Yun (Engineering Research Institute, Gyeongsang National University) ;
  • Gichun Kang (Department of Civil Engineering, Gyeongsang National University)
  • 윤현수 ;
  • 윤성규 ;
  • 강기천
  • Received : 2024.03.07
  • Accepted : 2024.05.09
  • Published : 2024.06.30

Abstract

The 2017 Pohang earthquake caused damage to quay structures due to liquefaction. Liquefaction occurs when effective stress is lost due to an increase in excess pore water pressure during an earthquake. As a result, the damage caused to the pier-type quay wall was identified and the damage caused by liquefaction was analyzed. In addition, in the case of improved ground, damage occurred due to liquefaction of the lower sand layer due to the difference in stiffness from the soft rock layer, so additional numerical analysis was performed assuming non-liquefaction ground. There are several factors that affect the increase in excess pore water pressure ratio, such as the relative density of the ground and the magnitude of the input seismic acceleration. Therefore, this study performed numerical analysis for Cases 1 to 3 by increasing the magnitude of the input acceleration, and in the case of improved ground, damage occurred due to liquefaction of the lower sand layer, so the analysis was performed assuming non-liquefaction ground. As a result, the improved ground requires additional reinforcement when there is liquefied ground below, and the horizontal displacement of the pier-type quay piles was reduced by about two times.

2017년 포항지진으로 인해 액상화 현상에 의한 안벽구조물에 피해가 발생하였다. 액상화는 지진 시 과잉간극수압 증가로 인해 유효응력이 소실되어 발생하게 된다. 이에 따른 잔교식 안벽의 피해 발생 부분을 규명하며 액상화로 인한 피해를 분석하였다. 또한 개량지반의 경우 연암층과 강성차이로 인해 하부 Sand 층의 액상화 현상으로 인해 피해가 발생하여, 비액상화 지반으로 가정하고 추가적인 수치해석을 수행하였다. 과잉간극수압비의 증가에 영향을 주는 요인으로는 지반의 상대밀도 및 입력 지진가속도의 크기 등 여러 가지 원인이 있다. 따라서 본 연구는 입력가속도의 크기를 증가시켜 Case 1~3에 대해 수치해석을 수행하였고, 개량지반의 경우 하부 Sand층의 액상화 현상으로 인한 피해가 발생하여 비액상화지반으로 가정하여 분석을 수행하였다. 결과적으로, 개량지반은 하부 액상화지반이 있을 경우 추가적인 보강이 필요하며, 잔교식 안벽 말뚝의 수평변위가 약 2배 감소하는 현상이 나타났다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2020R1I1A3067248).

References

  1. Casagrande, A. (1936), "Characteristics of Cohesionless Soil Affecting the Stability of Slopes and Earth Fills", J. Boston Society of Civil Engineering,reprinted in contribution to soil mechanics, 1925-1940, pp.257-276
  2. Iai, S., Matsunaga, Y. and Kameoka, T. (1992a), "Strain space plasticity model for cyclic mobility", Soils and Foundations, Vol.32, No.2, pp.1-15.
  3. Iai, S., Matsunaga, Y. and Kameoka, T. (1992b), "Analysis of undrained cyclic behavior of sand under anisotropic consolidation", Soils and Foundations, Vol.32, No.2, pp.16-20.
  4. Kang, G. C. (2011), "Behavior of Buried Geo-structures due to Increase of Excess Pore Water Pressure Ratio During Earthquakes", Journal of the Korean Society of Geotechnical Engineering, Vol.12, No.27, pp.27-28.
  5. Kim, S. J., Hwang, W. K., Kim, T. H. and Kang, G. C. (2019), "A Case Study on Earthquake-induced Deformation of Quay Wall and Backfill in Pohang by 2D-Effective Stress Analysis", Journal of the Korean Society of Geotechnical Engineering, Vol.35, No.7, pp.15-27.
  6. MOF (2019), "Port Facility Design Casebook", Ministry of Oceans and Fisheries.
  7. Park, S. S. (2008), "Liquefaction Evaluation of Reclaimed Sites using and Effective Stress Analysis and an Equivalent Linear Analysis", Journal of Korea Society of Civil Engineering, Vol.28, No.2C, pp.83-94.
  8. Park, S. S., Nong, Z., Choi, S. G. and Moon, H. D. (2018), "Resistance of Pohang Sand", Journal of the Korean Geotechnical Society, Vol.34, No.9, pp.5-17.
  9. Seed, H. B. and Idriss, I. M., (1967), "Analysis of Soil Liquefaction: Niigata Earthquake", JSMFD, ASCE, Vol.93, No.SM3, pp.83-108.
  10. Seed, H. B. and Idriss, I. M., (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundations Division, Vol.97, pp.1249-1273.
  11. Towhata, I. and Ishihara, K. (1985), "Shear Work and Pore Water Pressure in Undrained Shear", Soils and Foundations, Vol.25, No.3, pp.73-84
  12. WG (2009), FLIP research committee IV: 2008 report on shear lock problem. (in Japanese).