• 제목/요약/키워드: Added Mass Model

Search Result 172, Processing Time 0.024 seconds

A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape (Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • The influence of different appendage shape on the characteristics of hydrodynamic forces on Manta-Type Unmanned Undersea Test Vehicle(MUUTV) was discussed experimentally. Fuselage only MUUTV model and two types of MUUTV model with different appendage geometries were considered as subject of discussion Oblique tow experiment was carried out in circulating water channel with three MUUTV models. A point of difference in hydrodynamic force characteristics among three models was compared and discussed. Furthermore, the linear hydrodynamic derivatives obtained from model experiment were compared with theoretical calculation results from slender body theory, added mass theory and ete. Based on the hydrodynamic force characteristics, motion stability of two types of MUUTV model with different appendage geometries was discussed and compared each other. Through the above analysis, the more suitable shape of appendage geometry was made clear.

  • PDF

Experimental Method for the Identification of the Propeller Blade Vibration Characteristics (프로펠러 날개의 진동특성에 대한 실험적 연구)

  • Lee, Hyun-Yup;Kim, Young-Joong;Nho, In-Sik;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.136-141
    • /
    • 2005
  • An experiment method has been developed to analyse the vibration characteristics of marine propeller blades, and vibration tests have been carried out on the model scale propeller in air and in water. The driving point transfer function(acceleration/excitation force) has been measured and modified by compensating the attachment effect of the impedance head. The measured natural frequencies in air have been compared with the theoretical results by an in-house FEM code PROSTEC. The added masses have been derived by comparing the measured natural frequencies in air and in water, and the results have been compared to the results using existing formula based on experience.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

  • Oh, Han-Bin;McLafferty, Fred W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.389-394
    • /
    • 2006
  • Fragmentation efficiencies of various ‘activated-ion’ electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and ‘in-beam’ activation were almost equally efficient with ~70% sequence coverage, while collisions were less productive. In particular, ‘in-beam’ activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest.

Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube (CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석)

  • 박치용;유기완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

A study on the Vibration Damping of a gun barrel using Dynamically Tuned Shroud (차열관을 이용한 포신의 진동 감쇠에 대한 연구)

  • Koh, Jae-Min;Kim, Kyeon-Sik;Kim, Jin-Woo;Jung, Hyun-Woo;Hwang, Jai-Hyuk;Bae, Jai-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.28-36
    • /
    • 2010
  • Current tanks have been developed to increase mobility and firepower, and its maximum range and destructive power are improved. This great change causes remained vibration of a gun barrel after firing. For this reason, people are trying to control vibration of gun barrel effectively. This thesis presents a modeling method and analysis results for gun barrel by using a thermal shroud as an absorber mass. DTS(Dynamically Tuned Shroud) is a vibration damping system using a thermal shroud as an added mass for decreasing remained vibration. The model has an advantage that the gun barrel's vibration can be decreased by dissipating a kinetic energy of thermal shroud without install an additional dynamic absorber to tip of the gun barrel. For analyzing the damping performance of the DTS, We derived an equation of motion of the barrel after setting a mathematical modeling, and found out the frequency analysis and tendency according to stiffness ratio between barrel and shroud.

  • PDF

Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine

  • Cho, Jin-Rae;Kim, Bo-Sung;Choi, Eun-Ho;Lee, Shi-Bok;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2014
  • A semi-analytical numerical approach for the effective structural dynamic response analysis of spar floating substructure for offshore wind turbine subject to wave-induced excitation is introduced in this paper. The wave-induced rigid body motions at the center of mass are analytically solved using the dynamic equations of rigid ship motion. After that, the flexible structural dynamic responses of spar floating substructure for offshore wind turbine are numerically analyzed by letting the analytically derived rigid body motions be the external dynamic loading. Restricted to one-dimensional sinusoidal wave excitation at sea state 3, pitch and heave motions are considered. Through the numerical experiments, the time responses of heave and pitch motions are solved and the wave-induced dynamic displacement and effective stress of flexible floating substructure are investigated. The hydrodynamic interaction between wave and structure is modeled by means of added mass and wave damping, and its modeling accuracy is verified from the comparison of natural frequencies obtained by experiment with a 1/100 scale model.

Motion Performance Prediction and Experiments of an Autonomous Underwater Vehicle through Fluid Drag Force Calculations (유체항력 계산을 통한 자율무인잠수정의 운동성능 예측과 실험)

  • Kim, Chang Min;Baek, Woon Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.614-619
    • /
    • 2015
  • In this study, a dynamics model was developed to predict the motion performance of an Autonomous Underwater Vehicle (AUV). The dynamics model includes basic dynamic state variables of the hull and force terms to determine the motion of the AUV. The affecting terms for the forces are hydrostatic force, added mass, hydrodynamic damping, lift and drag forces. The force terms can be calculated using analytical and Computational Fluid Dynamics methods. For the underwater motion simulation, a simple PD controller was used. Also, the AUV was tested in a water tank and near sea for the partial verification of the fluid drag force coefficients and way-point tracking motions.

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

Modeling and Tracking Simulation of ROV for Bottom Inspection of a Ship using Component Drag Model (요소항력모델을 활용한 선저검사용 ROV 모델링 및 트래킹 시뮬레이션)

  • Jeon, MyungJun;Lee, DongHyun;Yoon, Hyeon Kyu;Koo, Bonguk
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.374-380
    • /
    • 2016
  • The large drift and angle of attack motion of an ROV (Remotely operated vehicle) cannot be modeled using the typical hydrodynamic coefficients of conventional straight running AUVs and specific slender bodies. In this paper, the ROV hull is divided into several simple-shaped components to model the hydrodynamic force and moment. The hydrodynamic force and moment acting on each component are modeled as the components of added mass force and drag using the known values for simple shapes such as a cylinder and flat plate. Since an ROV is operated under the water, the only environmental force considered is the current effect. The target ROV dealt with in this paper has six thrusters, and it is assumed that its maneuvering motion is determined using a thrust allocation algorithm. Tracking simulations are carried out on the ship’s surface near the stern, bow, and midship sections based on the modeling of the hydrodynamic force and current effect.