• Title/Summary/Keyword: Adaptive-neuro control

Search Result 129, Processing Time 0.027 seconds

Design of Adaptive Neuro-Fuzzy Inference System Based Automatic Control System for Integrated Environment Management of Ubiquitous Plant Factory (유비쿼터스 식물공장의 통합환경관리를 위한 적응형 뉴로-퍼지 추론시 스템 기반의 자동제어시스템 설계)

  • Seo, Kwang-Kyu;Kim, Young-Shik;Park, Jong-Sup
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • The adaptive neuro-fuzzy inference system (ANFIS) based automatic control system framework was proposed for integrated environment management of ubiquitous plant factory which can collect information of crop cultivation environment and monitor it in real-time by using various environment sensors. Installed wireless sensor nodes, based on the sensor network, collect the growing condition's information such as temperature, humidity, $CO_2$, and the control system is to monitor the control devices by using ANFIS. The proposed automatic control system provides that users can control all equipments installed on the plant factory directly or remotely and the equipments can be controlled automatically when the measured values such as temperature, humidity, $CO_2$, and illuminance deviated from the decent criteria. In addition, the better quality of the agricultural products can be gained through the proposed automatic control system for plant factory.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

Dynamics Analysis of Industrial Robot Using Neural Network (뉴럴네트워크를 이용한 산업용 로봇의 동특성 해석)

  • Lee, Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.62-67
    • /
    • 1997
  • This paper reprdsents a new scheme of neural network control system analysis the robustues of robot manipulator using digital signal processors. Digtal signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In additions, DSPs are a s fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Durng past decade it was proposed the well-established theorys for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. The proposed neuro network control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.

  • PDF

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Control of Nonminimum Phase Systems with Neural Networks and Genetic Algorithm

  • Park, Lae-Jeong;Park, Sangbong;Bien, Zeugnam;Park, Cheol-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.35-49
    • /
    • 1994
  • It is well known that, for nominimum phase systems, a conventional linear controller of PID type or an adaptive controller of this structure shows limitation in achieving a satisfactory performance under tight specifications. In this paper, we combine a neuro-controller with a PI-controller with off-line learning capability provided by the Genetic Algorithm to propose a novel neuro-controller to control nonminimum phase systems effectively. The simulation results show that our proposed model is more efficient with faster rising time and less undershoot effect when the performances of the proposed controller and a conventional form are compared.

  • PDF

The Neuro-Adaptive Control of Robotic Manipulators using RBFN (RBFN을 이용한 로봇 매뉴퓰레이터의 실시간 제어)

  • Kim, Jung-Dae;Lee, Min-Joong;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2992-2994
    • /
    • 1999
  • This paper investigates the direct adaptive control of nonlinear systems using RBFN(radial basis function networks). The structure of the controller consists of a fixed PD controller and a RBFN controller in parallel. An adaptation law for the weight adjustment is developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Also, the tracking errors between the system outputs and the desired outputs converge to zero asymptotically. To evaluate the performance of the controller, the proposed method is applied to the trajectory control of the two-link manipulator.

  • PDF

A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control (GA 기반 퍼지 제어기의 설계 및 트럭 후진제어)

  • Kwak, Keun-Chang;Kim, Ju-Sik;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.

Adaptive Control of Inverted Pendulum using ANFIS (ANFIS를 이용한 도립진자의 적응제어)

  • Do, Byung-Jo;Ko, Joe-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.690-692
    • /
    • 1998
  • In general, fuzzy control system are efficient for the systems which are complicated and nonlinear. But the fuzzy control flawed by the fact that it is much trial and errors in process of getting parameters of membership function which can express optimal status of system. This paper shows the methodology which is applied of ANFIS(Adaptive Neuro-Fuzzy Inference System) for the coverage against these defects. It proved superiority of ANFIS by controlling inverted pendulum.

  • PDF