• Title/Summary/Keyword: Adaptive torque observer

Search Result 69, Processing Time 0.037 seconds

SPEED-SENSORLESS VECTOR CONTROL OF INDUCTION MOTOR USING MRAS (MRAS를 이용한 유도전동기의 속도센서 없는 벡터제어)

  • Kim, Kwang-Yeon;Cho, Kye-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.148-151
    • /
    • 1991
  • This paper describes the vector control system estimates rotor speed based on MRAS(Model Reference Adaptive Control) and this estimate is used for speed feedback control. The stability of speed estimator is proved on the basis of hyperstability theory. In order to improve the performance of speed control, the load torque is estimated by load torque observer and speed controller compensates this estimate value. Thus the robust vector control system against load torque disturbance is constructed.

  • PDF

Torque Harmonics Minimization in PMSM by Using Flux Harmonics Estimation (쇄교자속 추정을 통한 영구자석형 동기전동기의 토오크 제어)

  • 문형태
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.439-442
    • /
    • 2000
  • An adaptive nonlinear control of a brushless direct drive motor(BLDDM) is proposed. Comparing to the traditional PMSM the direct drive motor has smaller number of per pole and per phase slots to provide higher torque in low speed. This generic construction generates flux harmonics and finally results in unwanted torque harmonics. To control the speed a feedback linearization method is applied by choosing the $i_{ds}$ and $\omega_{m}$ as the output variables. The control of the flux harmonics is provided by using a flux observer with MRAC technique. As shown in the simula-tion results the proposed nonlinear speed controller has a good speed response in the steady state and robust to the flux variation

  • PDF

Current Sliding Mode Control with a Load Sliding Mode Observer for Permanent Magnet Synchronous Machines

  • Jin, Ningzhi;Wang, Xudong;Wu, Xiaogang
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The sliding mode control (SMC) strategy is applied to a permanent magnet synchronous machine vector control system in this study to improve system robustness amid parameter changes and disturbances. In view of the intrinsic chattering of SMC, a current sliding mode control method with a load sliding mode observer is proposed. In this method, a current sliding mode control law based on variable exponent reaching law is deduced to overcome the disadvantage of the regular exponent reaching law being incapable of approaching the origin. A load torque-sliding mode observer with an adaptive switching gain is introduced to observe load disturbance and increase the minimum switching gain with the increase in the range of load disturbance, which intensifies system chattering. The load disturbance observed value is then applied to the output side of the current sliding mode controller as feed-forward compensation. Simulation and experimental results show that the designed method enhances system robustness amid load disturbance and effectively alleviates system chattering.

Sensorless Speed Control System Using a Neural Network

  • Huh Sung-Hoe;Lee Kyo-Beum;Kim Dong-Won;Choy Ick;Park Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.612-619
    • /
    • 2005
  • A robust adaptive speed sensorless induction motor direct torque control (DTC) using a neural network (NN) is presented in this paper. The inherent lumped uncertainties of the induction motor DTC system such as parametric uncertainty, external load disturbance and unmodeled dynamics are approximated by the NN. An additional robust control term is introduced to compensate for the reconstruction error. A control law and adaptive laws for the weights in the NN, as well as the bounding constant of the lumped uncertainties are established so that the whole closed-loop system is stable in the sense of Lyapunov. The effect of the speed estimation error is analyzed, and the stability proof of the control system is also proved. Experimental results as well as computer simulations are presented to show the validity and efficiency of the proposed system.

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

A study on MRAS(Model Reference Adaptive System) Method Instantaneous Speed Observer for Very Low Speed Drive of Induction Motors (유도전동기의 극 저속도 운전을 위한 MRAS방식 순시속도 관측기에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Chung, Nam-Kil;Kim, Young-Bog
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1123-1133
    • /
    • 2012
  • This study configuration Vector Control System which is stable and has outstanding Dynamic Characteristics in Very Low Speed Region and Low Speed Region, and proposes Instantaneous Speed Observer and Very Low Speed Control method and vector control system of the speed estimation a using Reduced-Dimensional State Observer. The Observer proposed in this system, by appling Reduced-Dimensional State Observer to Load-Torque estimation and using for speed estimation, implements system composition simply and is capable of accurate Instantaneous Speed estimation in Very Low Speed Region. Also, this study reduces influence by System Noise and suggests an induction motor speed control system which is effective in Load Disturbance, modeling error, estimation noise and so on without changing pole of an Observer.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

An Improvement on low Speed Operation Performances of DTC for 3-level Inverter-fed Induction Motors (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 저속성능 개선)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choy, Ick;Kim, Kwang-Bae;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.693-700
    • /
    • 2000
  • A direct torque control algorithm for 3-level inverter-fed induction motors is presented. Conventional voltage selection methods provoke some problems such as stator flux drooping phenomenon and undersirable torque control appeared especially at the low speed operation. To overcome these problems, a proposed method uses intermediate voltage vectors, which are inherently generated in 3-level inverters. In the proposed algorithm, both subdivision of the basic switching sectors and applications of tntermediated voltages improve the low speed operation characteristics. This algorithm basically considers applications in which direct torque controlled induction motors are fed by 3-level inverters with low switching frequency around 500Hz. An adaptive observer is also employed to bring better responses at the low speed operation, by estimating some state-variables, motor speed and motor parameters which take a deep effect on the performance of the low speed operation. Simulation and experiment results verify effectiveness of the proposed algorithm.

  • PDF

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

A study on the adaptive control used in a system with variable load (가변부하시스템에서의 적응제어에 관한 연구)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1122-1127
    • /
    • 2001
  • This paper proposed a speed adaptive control system with load torque observer and feed-forward compensation using neural network for air compressor system driven an induction motor. The motor receive impact load change under the influence of piston movement of up and down, and so it difficult to obtain good speed control characteristics. With real-time adjusting control gain estimated in neural network, control characteristics of motor is improved. The validity of the proposed system is confirmed through the theoretical analysis and computer simulation.

  • PDF