• 제목/요약/키워드: Adaptive radial basis function network

검색결과 44건 처리시간 0.034초

S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구 (A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines)

  • 윤마루;박승범;선우명호;이승종
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Post-processing Technique for Improving the Odor-identification Performance based on E-Nose System

  • Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.368-372
    • /
    • 2015
  • In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system which may be occurred drift signals from sensor array. An adaptive radial basis function network using stochastic gradient (SG) and singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor's aging and poisoning problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have produced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array in electronic nose system.

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

RBFN를 이용한 로봇 매니퓰레이터의 신경망 적응 제어 (Neuro-Adaptive Control of Robot Manipulator Using RBFN)

  • 김정대;이민중;최영규;김성신
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.38-44
    • /
    • 2001
  • This paper investigates the direct adaptive control of nonlinear systems using RBFN(radial basis function networks). The structure of the controller consists of a fixed PD controller and a RBFN controller in parallel. An adaptation law for the parameters of RBFN is developed based on the Lyapunov stability theory to guarantee the stability of the overall control system. The filtered tracking error between the system output and the desired output is shown to be UUB(uniformly ultimately bounded). To evaluate the performance of the controller, the proposed method is applied to the trajectory contro of the two-link manipulator.

  • PDF

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.285-288
    • /
    • 2005
  • 신경회로망은 지능제어알고리즘 중의 하나로 학습능력을 가지고 있다. 이러한 학습능력 때문에 많은 분야에서 널리 사용되고 있으나, 지능제어의 단점인 안정도 문제를 수학적으로 증명하기 어렵다는 문제점을 갖고 있다. 본 논문에서는 신경회로망의 한 종류인 RBFN과 적응제어기법을 이용하여 로봇 매니퓰레이터 궤적 제어기를 구성하고 자 한다. 본 논문에서는 RBFN의 파라메터들을 적응제어기법을 이용하여 수학적으로 구하였고, 시스템의 안정도를 수학적으로 UUB를 만족한다는 것을 증명하였다. 그리고 수평다관절로봇 매니퓰레이터 궤적제어기에 적용하였다.

  • PDF

제한된 입력 전압을 갖는 전기 구동 로봇 매니퓰레이터에 대한 분산 강인 적응 신경망 제어 (Decentralized Robust Adaptive Neural Network Control for Electrically Driven Robot Manipulators with Bounded Input Voltages)

  • 신진호;김원호
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.753-763
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive neural network control scheme using multiple radial basis function neural networks for electrically driven robot manipulators with bounded input voltages in the presence of uncertainties. The proposed controller considers both robot link dynamics and actuator dynamics. Practically, the controller gain coefficients applied at each joint may be nonlinear time-varying and the input voltage at each joint is saturated. The proposed robot controller overcomes the various uncertainties and the input voltage saturation problem. The proposed controller does not require any robot and actuator parameters. The adaptation laws of the proposed controller are derived by using the Lyapunov stability analysis and the stability of the closed-loop control system is guaranteed. The validity and robustness of the proposed control scheme are verified through simulation results.

불확실한 이동 로봇에 대한 RBFN 기반 적응 추종 제어기의 설계 (Design of an RBFN-based Adaptive Tracking Controller for an Uncertain Mobile Robot)

  • 신진호;백운보
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1238-1245
    • /
    • 2014
  • This paper proposes an RBFN-based adaptive tracking controller for an electrically driven mobile robot with parametric uncertainties and external disturbances. A mobile robot model considered in this paper includes all models of the robot body and actuators with uncertain kinematic and dynamic parameters, and uncertain frictions and external disturbances. The proposed controller consists of an RBFN(Radial Basis Function Network) and a robust adaptive controller. The presented RBFN is used to approximate unknown nonlinear robot dynamic functions. The proposed controller is adjusted by the adaptation laws obtained through the Lyapunov stability analysis. The proposed control scheme does not a priori need the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. Also, nominal parameter values are not required in the controller. The global stability of the closed-loop robot control system is guaranteed using the Lyapunov stability theory. Simulation results show the validity and robustness of the proposed control scheme.

적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선 (Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction)

  • 조용현
    • 한국멀티미디어학회논문지
    • /
    • 제3권3호
    • /
    • pp.253-262
    • /
    • 2000
  • 본 논문에서는 적응적으로 추출된 입력 데이터의 특징을 은닉층 뉴런 개수와 중심값 설정에 이용하는 새로운 radial basis 함수 신경망을 제안하였다. 제안된 신경망에서는 입력데이터의 특징을 효과적으로 추출하기 위해 적응 학습알고리즘의 주요성분분석 기법을 이용하였다. 이렇게 하면 주요성분분석 기법이 가지는 대용량의 입력데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 장점과 RBF신경망이 가지는 우수한 속성을 그대로 살릴 수 있다. 제안된 기법의 radial basis 함수 신경망을 200명의 암환자를 2부류(초기와 악성)로 분류하는 문제에 적용하여 시뮬레이션한 결과, k-평균 군집화 알고리즘을 이용한 radial basis 함수 신경망에 의한 결과와 비교할 때 학습시간과 시험 데이터의 분류에서 더욱 우수한 성능이 있음을 확인할 수 있었다. 그리고 신경망의 초기 연 결가중치에 대한 의존도와 평활요소의 설정여유도 측면에서도 우수한 특성이 있음을 확인할 수 있었다.

  • PDF

An On-Line Adaptive Control of Underwater Vehicles Using Neural Network

  • Kim, Myung-Hyun;Kang, Sung-Won;Lee, Jae-Myung
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.33-38
    • /
    • 2004
  • All adaptive neural network controller has been developed for a model of an underwater vehicle. This controller combines a radial basis neural network and sliding mode control techniques. No prior off-line training phase is required, and this scheme exploits the advantages of both neural network control and sliding mode control. An on-line stable adaptive law is derived using Lyapunov theory. The number of neurons and the width of Gaussian function should be chosen carefully. Performance of the controller is demonstrated through computer simulation.

신경 회로망을 이용한 적응 제어 시스템의 설계 (Design of an Adaptive Control System using Neural Network)

  • 장태인;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF