• Title/Summary/Keyword: Adaptive learning

Search Result 1,003, Processing Time 0.027 seconds

The Improvement of Convergence Characteristic using the New RLS Algorithm in Recycling Buffer Structures

  • Kim, Gwang-Jun;Kim, Chun-Suck
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2003
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-l, we may compute the updated estimate of this vector at iteration n upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RLS algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the B times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection (자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상)

  • 이현진;박혜영;이일병
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.326-338
    • /
    • 2003
  • The objective of a neural network design and model selection is to construct an optimal network with a good generalization performance. However, training data include noises, and the number of training data is not sufficient, which results in the difference between the true probability distribution and the empirical one. The difference makes the teaming parameters to over-fit only to training data and to deviate from the true distribution of data, which is called the overfitting phenomenon. The overfilled neural network shows good approximations for the training data, but gives bad predictions to untrained new data. As the complexity of the neural network increases, this overfitting phenomenon also becomes more severe. In this paper, by taking statistical viewpoint, we proposed an integrative process for neural network design and model selection method in order to improve generalization performance. At first, by using the natural gradient learning with adaptive regularization, we try to obtain optimal parameters that are not overfilled to training data with fast convergence. By adopting the natural pruning to the obtained optimal parameters, we generate several candidates of network model with different sizes. Finally, we select an optimal model among candidate models based on the Bayesian Information Criteria. Through the computer simulation on benchmark problems, we confirm the generalization and structure optimization performance of the proposed integrative process of teaming and model selection.

Effect of Information System Quality, Organizational Pressure, and Team Climate on the Appropriation of an Information System and Related Task Performance (정보시스템 품질, 조직압력, 팀 풍토가 정보시스템 전유에 미치는 영향과 과업성과)

  • Min, Kyung Ui;Baek, Seung Nyoung
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.65-92
    • /
    • 2015
  • Driven by the development of information technologies, information system (IS) use has been common even in military organizations. In particular, field artillery is currently using the Battalion Tactical Commanding System-A1 (BTCS-A1) to improve fire support. The use of BTCS-A1 makes fire-commanding processes simple and autonomous, which leads to shorten time to support fire. Although BTCS-A1 has been considered as a helpful system, there still exists some dispute regarding its effectiveness and impact on task performance. By conceptualizing BTCS-A1 use as appropriation, this study investigates how BTCS-A1 appropriation promotes task performance. We also hypothesize that IS quality, organizational pressure (institutional pressure and supervisor influence), and team climate (team learning climate and team empowerment climate) increase the appropriation. Survey results show that organizational pressure and team climate promote BTCS-A1 appropriation, which improves users' task performance. However, effect of IS quality is not significant. Theoretical and practical implications are presented.

Dynamic Distributed Adaptation Framework for Quality Assurance of Web Service in Mobile Environment (모바일 환경에서 웹 서비스 품질보장을 위한 동적 분산적응 프레임워크)

  • Lee, Seung-Hwa;Cho, Jae-Woo;Lee, Eun-Seok
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.839-846
    • /
    • 2006
  • Context-aware adaptive service for overcoming the limitations of wireless devices and maintaining adequate service levels in changing environments is becoming an important issue. However, most existing studies concentrate on an adaptation module on the client, proxy, or server. These existing studies thus suffer from the problem of having the workload concentrated on a single system when the number of users increases md, and as a result, increases the response time to a user's request. Therefore, in this paper the adaptation module is dispersed and arranged over the client, proxy, and server. The module monitors the contort of the system and creates a proposition as to the dispersed adaptation system in which the most adequate system for conducting operations. Through this method faster adaptation work will be made possible even when the numbers of users increase, and more stable system operation is made possible as the workload is divided. In order to evaluate the proposed system, a prototype is constructed and dispersed operations are tested using multimedia based learning content, simulating server overload and compared the response times and system stability with the existing server based adaptation method. The effectiveness of the system is confirmed through this results.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

The cancellation performance of loop-back signal in wireless USN multihop relay node (무선 USN 멀티홉 중계 노드에서 루프백 신호의 제거 성능)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • This paper deals with the cancellation performance of loop back interference signal in the case of multihop relay of 16-QAM received signal at the USN radio network. For this, it is necessary to the exchange of information with long distance located station by means of the relay function between the node in the USN environment. In the relay node, the loop-back interference signal which the retransmitting signal is feedback to the receiver side due to the antenna of transmitter and receiver are co-used or very colsely located or using the nonlinear device. Due to this signal, the performance of USN system are degraded which are using the limited resource of frequency and power. For improve this, it is necessary to applying the adaptive signal processing algorithm in order to cancellating the unwanted loop-back interference signal at the frontend of receiver in relaying node, we can get the better system and multi hop performance. In the adaptive signal processing, we considered the 16-QAM signal which has a good spectral efficiency, firstly, than, the QR-Array RLS algorithm was used that has a fairly good convergence property and the solving the finite length problem in the H/W implementation. Finaly, we confirmed that the good elimination performanc was confirmed by computer simulation in the learing cuved and received signal constellation compared to the conventional RLS.

  • PDF

Comparison of resampling methods for dealing with imbalanced data in binary classification problem (이분형 자료의 분류문제에서 불균형을 다루기 위한 표본재추출 방법 비교)

  • Park, Geun U;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.3
    • /
    • pp.349-374
    • /
    • 2019
  • A class imbalance problem arises when one class outnumbers the other class by a large proportion in binary data. Studies such as transforming the learning data have been conducted to solve this imbalance problem. In this study, we compared resampling methods among methods to deal with an imbalance in the classification problem. We sought to find a way to more effectively detect the minority class in the data. Through simulation, a total of 20 methods of over-sampling, under-sampling, and combined method of over- and under-sampling were compared. The logistic regression, support vector machine, and random forest models, which are commonly used in classification problems, were used as classifiers. The simulation results showed that the random under sampling (RUS) method had the highest sensitivity with an accuracy over 0.5. The next most sensitive method was an over-sampling adaptive synthetic sampling approach. This revealed that the RUS method was suitable for finding minority class values. The results of applying to some real data sets were similar to those of the simulation.

Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)

  • Heo, Junyoung;Yang, Jin Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.

Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice

  • Lee, Young;Han, Na-Eun;Kim, Wonju;Kim, Jae Gon;Lee, In Bum;Choi, Su Jeong;Chun, Heejung;Seo, Misun;Lee, C. Justin;Koh, Hae-Young;Kim, Joung-Hun;Baik, Ja-Hyun;Bear, Mark F.;Choi, Se-Young;Yoon, Bong-June
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.360-372
    • /
    • 2020
  • The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined a transgenic mouse line (G2CT) in which synaptic transmissions onto the medium spiny neurons (MSNs) of the basal ganglia are depressed. We found that the level of collaterals from direct pathway MSNs in the external segment of the globus pallidus (GPe) ('bridging collaterals') was decreased in these mice, and this was accompanied by behavioral inhibition under stress. Furthermore, additional manipulations that could further decrease or restore the level of the bridging collaterals resulted in an increase in behavioral inhibition or active behavior in the G2CT mice, respectively. Collectively, our data indicate that the striatum of the basal ganglia network integrates negative emotions and controls appropriate coping responses in which the bridging collateral connections in the GPe play a critical regulatory role.

The study about occupational ability of dental hygiene department students required of the dental clinics (치과병의원에서 요구하는 치위생과 졸업생들의 직업능력에 관한 연구)

  • Kim, Jung;Um, June-Young
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.4
    • /
    • pp.633-643
    • /
    • 2009
  • Objectives : This study is aimed to help the dental hygiene department students to improve their adaptive ability to the field work by letting them know the performing levels required of the job world, by renovating the knowledge-centered curriculum, and by finding out the core competencies needed for successfully performing their duties and tasks in the work field. Methods : The survey tool was recomposed through the examination of the preceeding studies on basic vocational competencies and skills, and the survey has been done to 200 dentists in Seoul and Gyunggi provice. Results : 1. As for the job-getting routs, 35.1% of them finds their jobs through the job portal sites, and 21.3% through the recommendation by professors. So we can see the meaningful difference in the employment ways. 2. Dental hygiene clinics think that the purpose of their cooperation with the colleges is mainly to secure human resources by requiring the colleges to give field-centered education the colleges through. 3. The clinics for dental hygienic students' field learning have a great power for hiring the students. So it is necessary to set up a good management system of the clinics for dental hygienic students' field learning in order to reinforce the students' competitive power in getting jobs. 4. The priorities in basic working abilities needed for the task performance are in the order of vocational responsibility, self-managing & developing ability, interpersonal skill, and problem solving ability. 5. The core competencies required of those who graduate from dental hygiene school show the following scores by Likert measurement; good personality and vocational consciousness 2.16(${\pm}.677$), understanding power of major-related knowledge 2.19(${\pm}.723$), field adapting ability 2.31(${\pm}.748$), get-along-with ability 2.32(${\pm}.799$), interpersonal skill 2.42(${\pm}.768$), and self-development ability such as getting certificates 2.43(${\pm}.729$). Among the core competencies, the only meaningful factor which influences on their satisfaction measurement has been identified as the professional ability related to the major. Conclusions : The results suggest that the knowledge and skill related to the major are core competencies of able human resources and closely related with the professionality of the job, and so they are very important. However, job basic abilities are also proved to be important, which reinforce the students' activeness, self-regulation, and creativeness, and help them to pursue their lasting growth in their abilities.

  • PDF