• 제목/요약/키워드: Adaptive genetic algorithm

검색결과 227건 처리시간 0.034초

유전자 알고리즘을 이용한 영상개선 필터 시스템 구현 (Implementation of Image Enhancement Filter System Using Genetic Algorithm)

  • 구지훈;동성수;이종호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권8호
    • /
    • pp.360-367
    • /
    • 2002
  • In this paper, genetic algorithm based adaptive image enhancement filtering scheme is proposed and Implemented on FPGA board. Conventional filtering methods require a priori noise information for image enhancement. In general, if a priori information of noise is not available, heuristic intuition or time consuming recursive calculations are required for image enhancement. Contrary to the conventional filtering methods, the proposed filter system can find optimal combination of filters as well as their sequent order and parameter values adaptively to unknown noise types using structured genetic algorithms. The proposed image enhancement filter system is mainly composed of two blocks. The first block consists of genetic algorithm part and fitness evaluation part. And the second block consists of four types of filters. The first block (genetic algorithms and fitness evaluation blocks) is implemented on host computer using C code, and the second block is implemented on re-configurabe FPGA board. For gray scale control, smoothing and deblurring, four types of filters(median filter, histogram equalization filter, local enhancement filter, and 2D FIR filter) are implemented on FPGA. For evaluation, three types of noises are used and experimental results show that the Proposed scheme can generate optimal set of filters adaptively without a pioi noise information.

유전자알고리즘을 이용한 영상분할 문턱값의 자동선정에 관한 연구 (Automatic Thresholding Selection for Image Segmentation Based on Genetic Algorithm)

  • 이병룡;;;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.587-595
    • /
    • 2011
  • In this paper, we focus on the issue of automatic selection for multi-level threshold, and we greatly improve the efficiency of Otsu's method for image segmentation based on genetic algorithm. We have investigated and evaluated the performance of the Otsu and Valley-emphasis threshold methods. Based on this observation we propose a method for automatic threshold method that segments an image into more than two regions with high performance and processing in real-time. Our paper introduced new peak detection, combines with evolution algorithm using MAGA (Modified Adaptive Genetic Algorithm) and HCA (Hill Climbing Algorithm), to find the best threshold automatically, accurately, and quickly. The experimental results show that the proposed evolutionary algorithm achieves a satisfactory segmentation effect and that the processing time can be greatly reduced when the number of thresholds increases.

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

MADS를 결합한 GA 기반의 풍력발전기 최적설계 (Optimal Design of PM Wind Generator Based on Genetic Algorithm Combined with Mesh Adaptive Direct Search)

  • 안영준;박지성;이철균;김종욱;김용재;정상용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.615_616
    • /
    • 2009
  • 유한요소해석(Finite Element Analysis)을 통한 풍력발전기 최적설계시, 해석 특성상 발생하는 막대한 소요시간의 개선이 필요하다. 본 논문에서는 연간 에너지 생산량(Annual Energy Production : AEP)의 최대화를 목표로 GA(Genetic Algorithm)와 MADS(Mesh Adaptive Direct Search)를 결합한 혼합 알고리즘을 이용하여 최적설계를 수행하였다. 또한, 혼합 알고리즘과 병렬분산 유전알고리즘을 이용한 최적설계의 해석 소요시간을 비교 및 검토하였다.

  • PDF

진화 하드웨어 시스템을 위한 재구성 가능한 디지털 신호처리 구조 (A Reconfigurable Digital Signal Processing Architecture for the Evolvable Hardware System)

  • 이한호;최창석;이용민;최진택;이종호;정덕진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.663-664
    • /
    • 2006
  • This paper presents a reconfigurable digital signal processing(rDSP) architecture that is effective for implementing adaptive digital signal processing in the applications of smart health care system. This rDSP architecture employs an evolution capability of FIR filters using genetic algorithm. Parallel genetic algorithm based rDSP architecture evolves FIR filters to explore optimal configuration of filter combination, associated parameters, and structure of feature space adaptively to noisy environments for an adaptive signal processing. The proposed DSP architecture is implemented using Xilinx Virtex4 FPGA device and SMIC 0.18um CMOS Technology.

  • PDF

A Fast Anti-jamming Decision Method Based on the Rule-Reduced Genetic Algorithm

  • Hui, Jin;Xiaoqin, Song;Miao, Wang;Yingtao, Niu;Ke, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4549-4567
    • /
    • 2016
  • To cope with the complex electromagnetic environment of wireless communication systems, anti-jamming decision methods are necessary to keep the reliability of communication. Basing on the rule-reduced genetic algorithm (RRGA), an anti-jamming decision method is proposed in this paper to adapt to the fast channel variations. Firstly, the reduced decision rules are obtained according to the rough set (RS) theory. Secondly, the randomly generated initial population of the genetic algorithm (GA) is screened and the individuals are preserved in accordance with the reduced decision rules. Finally, the initial population after screening is utilized in the genetic algorithm to optimize the communication parameters. In order to remove the dependency on the weights, this paper deploys an anti-jamming decision objective function, which aims at maximizing the normalized transmission rate under the constraints of minimizing the normalized transmitting power with the pre-defined bit error rate (BER). Simulations are carried out to verify the performance of both the traditional genetic algorithm and the adaptive genetic algorithm. Simulation results show that the convergence rates of the two algorithms increase significantly thanks to the initial population determined by the reduced-rules, without losing the accuracy of the decision-making. Meanwhile, the weight-independent objective function makes the algorithm more practical than the traditional methods.

Design of FLC for High-Angle-of-Attack Flight Using Adaptive Evolutionary Algorithm

  • Won, Tae-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.187-196
    • /
    • 2003
  • In this paper, a new methodology of evolutionary computations - An Adaptive Evolutionary Algorithm (AEA) is proposed. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations : global search capability of GA and local search capability of ES. In the reproduction procedure, the proportions of the population by GA and ES are adaptively modulated according to the fitness. AEA is used to. designing fuzzy logic controller (FLC) for a high-angle-of-attack flight system for a super-maneuverable version of F-18 aircraft. AEA is used to determine the membership functions and scaling factors of an FLC. The computer simulation results show that the FLC has met both robustness and performance requirements.

컨포멀 위상 배열 안테나의 패턴 합성에 대한 고찰 (Study on Pattern Synthesis of Conformal Phased Array Antenna)

  • 박동철;권오혁;류홍균;이규송
    • 한국전자파학회논문지
    • /
    • 제26권12호
    • /
    • pp.1031-1043
    • /
    • 2015
  • 본 논문에서는 Enhanced Adaptive Genetic Algorithm(EAGA)를 이용하여 두 가지 종류의 컨포멀 배열 안테나의 패턴 합성 과정을 기술하였다. 한 종류는 2차 함수 형태의 실린더 도체 위에 배열된 $1{\times}16$ 배열 안테나이고, 다른 종류는 2차 함수 곡선의 회전체 곡면 도체 위에 배열된 18개 소자 배열 안테나이다. 패턴 합성시 각 소자의 능동 소자 패턴을 이용하였고, 특히 회전체형 배열 안테나의 경우, 합성 시간을 크게 줄이기 위해 동심원형 평면 배열 안테나의 능동 소자 패턴을 구한 뒤 이를 변환하여 사용하였다. 제안한 합성 기법의 타당성을 검증하기 위해 MATLAB 내에서 합성된 배열 안테나의 패턴과 MWS(Microwave Studio) 내에서 구현된 배열 안테나의 패턴을 비교하였으며, 또한, $1{\times}16$ 배열 안테나의 경우는 측정 패턴과 합성 패턴도 비교하였다.

유전자 알고리즘을 이용한 적응적 포인팅 및 보정 알고리즘 (An Adaptive Pointing and Correction Algorithm Using the Genetic Algorithm)

  • 조정재;김영철
    • 한국멀티미디어학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-74
    • /
    • 2013
  • 본 논문에서는 블루투스 통신 기반에서 최적의 성능을 위한 포인팅 및 보정 알고리즘을 제안한다. 가속도 센서는 각속도 센서보다 데이터 변화량이 더 민감하기 때문에 데이터 출력 값의 오류를 야기하는 주된 원인이 된다. 따라서 가속도 센서로부터의 각 축에 대한 데이터 값에 칼만 필터를 적용함으로써 노이즈를 최소화하였으며, 추가적으로 x, y 변화량에 칼만 필터를 적용함으로써 손 떨림에 대한 보정 효과를 얻을 수 있다. 본 논문에서는 가속도와 각속도 센서 데이터를 Quaternion 사상 처리를 통해 데이터 추출을 적용한다. 추출된 데이터 값에 중력 가속도를 이용한 기울임 보정 알고리즘을 적용함으로써 기울임 보정 효과를 얻을 수 있다. 또한 장치의 급격한 움직임에 의한 센서 데이터의 부정확성을 해결하기 위하여 유전자 알고리즘을 적용한 사용자에 따라 달리 초기 해집단을 생성하는 적응적 포인팅 및 보정 알고리즘을 구현한다.

Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.645-662
    • /
    • 2009
  • Adaptive wings are capable of properly modifying their shape depending on the current aerodynamic conditions, in order to improve the overall performance of a flying vehicle. In this paper is presented the concept design of a small-scale compliant wing rib whose outline may be distorted in order to switch from an aerodynamic profile to another. The distortion loads are induced by shape memory alloy actuators placed within the frame of a wing section whose elastic response is predicted by the matrix method with beam formulation. Genetic optimization is used to find a wing rib structure (corresponding to the first airfoil) able to properly deforms itself when loaded by the SMA-induced forces, becoming as close as possible to the desired target shape (second airfoil). An experimental validation of the design procedure is also carried out with reference to a simplified structure layout.