• Title/Summary/Keyword: Adaptive approximation

Search Result 218, Processing Time 0.027 seconds

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors (근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.527-532
    • /
    • 2005
  • In this paper, we proposed an adaptive fuzzy sliding control for unknown nonlinear systems using estimation of bounds for approximation errors. Unknown nonlinearity of a system is approximated by the fuzzy logic system with a set of IF-THEN rules whose consequence parameters are adjusted on-line according to adaptive algorithms for the purpose of controlling the output of the nonlinear system to track a desired output. Also, using assumption that the approximation errors satisfy certain bounding conditions, we proposed the estimation algorithms of approximation errors by Lyapunov synthesis methods. The overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. The good performance of the proposed adaptive fuzzy sliding mode controller is verified through computer simulations on an inverted pendulum system.

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

Adaptive Fuzzy Controller with Variable Deadzone (가변 사구간을 갖는 적응 퍼지 제어기)

  • 구근모
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.39-42
    • /
    • 1998
  • This paper proposes an adaptive fuzzy control scheme for a class of continuous-time nonlinear dynamic systems for which an explicit linear parameterization of the uncertainty is either unknown or impossible. In order to improve robustness under approximation errors and disturbances the proposed scheme includes deadzone in adaptation laws which varies its size adaptively. The assumption of known bounds on the approximation errors and disturbances is not required since those are estimated using adaptation laws. The overall adaptive scheme is proven to guarantee uniform ultimate boundedness in the Lyapunov sense.

  • PDF

An adaptive approximation of countours for a region-based image sequence coding

  • 임채욱;이강혁;김경중;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1178-1184
    • /
    • 1997
  • Encoding of segment contours is a critical part of a region-based coding system especially at low bit rates where the contour information occupies a majority of the bit rate. When approximating contours with polygons, a fixed upper bound on the distortion is set for the approximation process. Instead of using this fixed bound, adaptive approximation bound for a lossy coding of contourts is proposed in this paper. A function representing the relative importance of the contour segmentis defined to take into account the spatial content of the image. By using this function, the contour can be approximated adaptively. This allows a more general approach than the methods with the fixed distortion measure. The effectiveness of the adaptive contour coding approach is verified through experiments.

  • PDF

Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer (퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

Study on an Approximation Technique using MDO (MDO에서 적용가능한 근사기법의 활용에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3661-3666
    • /
    • 2015
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive approximation, is a competent strategy via MDO framework systems.

Direct and Indirect Robust Adaptive Fuzzy Controllers for a Class of Nonlinear Systems

  • Essounbouli Najib;Hamzaoui Abdelaziz
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • In this paper, we propose direct and indirect adaptive fuzzy sliding mode control approaches for a class of nonaffine nonlinear systems. In the direct case, we use the implicit function theory to prove the existence of an ideal implicit feedback linearization controller, and hence approximate it to attain the desired performances. In the indirect case, we exploit the linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to establish an affine-in-control model, and therefore design an indirect adaptive fuzzy controller. In both cases, the adaptation laws of the adjustable parameters are deduced from the stability analysis, in the sense of Lyapunov, to get a more accurate approximation level. In addition to their robustness, the design of the proposed approaches does not require the upper bounds of both external disturbances and approximation errors. To show the efficiency of the proposed controllers, a simulation example is presented.

Adaptive Observer using Auto-generating B-splines

  • Baang, Dane;Stoev, Julian;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.479-491
    • /
    • 2007
  • This paper presents a new adaptive observer design method for a class of uncertain nonlinear systems by using spline approximation. This scheme leads to a simplified observer structure which requires only fixed number of integrations, regardless of the number of parameters to be estimated. This benefit can reduce the number of integrations of the observer filter dramatically. Moreover, the proposed adaptive observer automatically generates the required spline elements according to the varying output value and, as a result, does not requires the pre-knowledge of upper and lower bounds of the output. This is another benefit of our approach since the requirement for known output bounds have been one of the main drawbacks of practical universal approximation problems. Both of the benefits stem from the local support property, which is specific to splines.

A Study on Simple Adaptive Control of Flexible-Joint Robots Considering Motor Dynamics (모터 동역학식을 고려한 유연 연결 로봇의 간단한 적응 제어에 관한 연구)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1103-1109
    • /
    • 2008
  • Since the flexible joint robots with motor dynamics are represented by the fifth-order nonlinear sγstem, it is difficult and complex to design the controller for electrically driven flexible-joint (EDFJ) robots. In this paper, we propose a simple adaptive control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. For the simple control design, the dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. It is proved that all signals in the controlled closed-loop system are uniformly ultimately bounded. Simulation results for three-link EDFJ manipulators are provided to validate the effectiveness of the proposed control system.

Robust Direct Adaptive Fuzzy Controller (강인한 직접 적응 퍼지 제어기)

  • 김용태;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.199-203
    • /
    • 1997
  • In this paper is proposed a new direct adaptive fuzzy controller that dan ve applied for tracking control of a class of uncertain nonlinear SISO systems. It is shown that, in the presence of the perturbations such as fuzzy approximation error and external disturbance, boundedness of all the signals in the system is ensured, while under the assumption of no perturbations, the stability of the overall system in guaranteed. Also, the concept of persistent excitation in the adaptive fuzzy control systems is introduced to guarantee the convergence and the boundedness of adaptation parameter in the proposed controllers. Simulation example shows the effectiveness of the proposed method in the presence of fuzzy approximation error and external disturbance.

  • PDF