• Title/Summary/Keyword: Adaptive Time Integration

Search Result 54, Processing Time 0.027 seconds

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

Supply Chain Planning in Multiplant Network (다중플랜트 네트워크에서의 공급사슬계획)

  • Jeong Jae-Hyeok;Mun Chi-Ung;Kim Jong-Su
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.203-208
    • /
    • 2002
  • In case of the problems with multiple plants, alternative operation sequence, alternative machine, setup time, and transportation time between plants, we need a robust methodology for the integration of process planning and scheduling in supply chain. The objective of this model is to minimize the tardiness and to maximize the resource utilization. So, we propose a multi-objective model with limited-capacity constraint. To solve this model, we develope an efficient and flexible model using adaptive genetic algorithm(AGA), compared to traditional genetic algorithm(TGA)

  • PDF

Detection of Chatter Vibration in End-Mill Process by Neural Network Methodology (신경회로망을 이용한 엔드-밀 공정에서의 채터검지)

  • Chung, Eui-Sik;Ko, Joon-Bin;Kim, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.149-156
    • /
    • 1995
  • This paper presents a method of detecting chatter vibration in end-mill process. The detecting system consists of an adaptive signal processing scheme which uses an autore- gressive time-series model and a neural network is proposed and is verified its effectiveness by using acceleration and cutting force signals recorded during slotting in end-mill operations. Expeerimental results indicate that the proposed system provides excellent detection when chatter is occured within the ranges of cutting conditions considered in this study and an effectiveness of the integration of signals is confirmed.

  • PDF

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

An effective locally-defined time marching procedure for structural dynamics

  • Sofiste, Tales Vieira;Soares, Delfim Jr;Mansur, Webe Joao
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • The present work describes a new time marching procedure for structural dynamics analyses. In this novel technique, time integration parameters are automatically evaluated according to the properties of the model. Such parameters are locally defined, allowing the user to input a numerical dissipation property for each element, which defines the amount of numerical dissipation to be introduced. Since the integration parameters are locally defined as a function of the structural element itself, the time marching technique adapts according to the model, providing enhanced accuracy. The new methodology is based on displacement-velocity relations and no computation of accelerations is required. Furthermore, the method is second order accurate, it has guaranteed stability, it is truly self-starting and it allows highly controllable algorithm dissipation in the higher modes. Numerical results are presented and compared to those provided by the Newmark and the Bathe methods, illustrating the good performance of the new time marching procedure.

A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller (자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구)

  • Shin, Joon;Lee, Tae-Yeon;Kim, Heung-Seob;Jo, Seong-Oh;Bang, Seung-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF

Performance Analysis of an Adaptive Hybrid Search Code Acquisition Algorithm for DS-CDMA Systems (DS-CDMA 시스템을 위한 적응 혼합 검색형 동기획득 알고리즘의 성능 분석)

  • Park Hyung rae;Yang Yeon sil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.83-91
    • /
    • 2005
  • We analyze the performance of an adaptive hybrid search code acquisition algorithm for direct-sequence code division multiple access (DS-CDMA) systems under slowly-moving mobile environments. The code acquisition algorithm is designed to provide the desired feature of constant false alarm rate (CFAR) to cope with nonstationarity of the interference in CDMA forward links. An analytical expression for the mean acquisition time is first derived and the probabilities of detection, miss, and false alarm are then obtained for frequency-selective Rayleigh fading environments. The fading envelope of a received signal is assumed to be constant over the duration of post-detection integration (PDI), considering slow fading environments. Finally, the performance of the designed code acquisition algorithm shall be evaluated numerically to examine the effect of some design parameters such as the sub-window size, size of the PDI, decision threshold, and so on, considering cdma2000 environments.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

Real-time 14N NQR-based sodium nitrite analysis in a noisy field

  • Mohammad Saleh Sharifi;Ho Seung Song;Hossein Afarideh;Mitra Ghergherehchi;Mehdi Simiari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4570-4575
    • /
    • 2023
  • Noise and Radio-frequency interference or RFI causes a significant restriction on the Free induction Decay or FID signal detection of the Nuclear Quadrupole Resonance procedure. Therefore, using this method in non-isolated environments such as industry and ports requires extraordinary measures. For this purpose, noise reduction algorithms and increasing signal-to-noise-and-interference ratio or SNIR have been used. In this research, sodium nitrite has been used as a sample and algorithms have been tested in a non-isolated environment. The resonant frequencies for the 150 g of test sample were measured at 303 K at about 1 MHz and 3.4 MHz. The main novelty in this study was, (1) using two types of antennas in the receiver to improve adaptive noise and interference cancellation, (2) using a separate helical antenna in the transmitter to eliminate the duplexer, (3) estimating the noise before sending the pulse to calculate the weighting factors and reduce the noise by adaptive noise cancellation, (3) reject the interference by blanking algorithm, (4) pulse integration in the frequency domain to increase the SNR, and (5) increasing the detection speed by new pulse integration technique. By interference rejection and noise cancellation, the SNIR is improved to 9.24 dB at 1 MHz and to 7.28 dB at 3.4 MHz, and by pulse integration 44.8 dB FID signal amplification is achieved, and the FID signals are detected at 1.057 MHz and 3.402 MHz at room temperature.

Computation of the Euler Equations on the Adaptive Cartesian Grids Using the Point Gauss-Seidel Method (적응형 Cartesian 격자기법에서 Point Gauss-Seidel 기법을 사주한 Euler 방정식 계산)

  • Lee J. G.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.93-98
    • /
    • 2001
  • An adaptive Cartesian grid method having the best elements of structured, unstructured, and Cartesian grids is developed to solve the steady two-dimensional Euler equations. The solver is based on a cell-centered finite-volume method with Roe's flux-difference splitting and implicit point Gauss-seidel time integration method. Calculations of several compressible flows are carried out to show the efficiency of the developed computer code. The results were generally in good agreements with existing data in the literature and the developed code has the good ability to capture important feature of the flows.

  • PDF