Browse > Article
http://dx.doi.org/10.12989/sem.2020.73.1.065

An effective locally-defined time marching procedure for structural dynamics  

Sofiste, Tales Vieira (Civil Engineering Department, COPPE, Federal University of Rio de Janeiro. Modeling Methods in Engineering and Geophysics Laboratory - LAMEMO)
Soares, Delfim Jr (Structural Engineering Department, Federal University of Juiz de Fora)
Mansur, Webe Joao (Civil Engineering Department, COPPE, Federal University of Rio de Janeiro. Modeling Methods in Engineering and Geophysics Laboratory - LAMEMO)
Publication Information
Structural Engineering and Mechanics / v.73, no.1, 2020 , pp. 65-73 More about this Journal
Abstract
The present work describes a new time marching procedure for structural dynamics analyses. In this novel technique, time integration parameters are automatically evaluated according to the properties of the model. Such parameters are locally defined, allowing the user to input a numerical dissipation property for each element, which defines the amount of numerical dissipation to be introduced. Since the integration parameters are locally defined as a function of the structural element itself, the time marching technique adapts according to the model, providing enhanced accuracy. The new methodology is based on displacement-velocity relations and no computation of accelerations is required. Furthermore, the method is second order accurate, it has guaranteed stability, it is truly self-starting and it allows highly controllable algorithm dissipation in the higher modes. Numerical results are presented and compared to those provided by the Newmark and the Bathe methods, illustrating the good performance of the new time marching procedure.
Keywords
structural dynamics; time marching; adaptive analyses; local parameters; controllable dissipation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Soares Jr, D. (2019a), "A locally stabilized central difference method", Finite Element. Anal. Design, 155, 1-10. https://doi.org/10.1016/j.finel.2018.12.001.   DOI
2 Soares Jr, D. (2019b), "An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics", Comput. Method. Appl. Mech. Eng., 354(1), 637-662. https://doi.org/10.1016/j.cma.2019.05.040.   DOI
3 Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31-32), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001.   DOI
4 Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009.   DOI
5 Chang, S-I. (2014), "A family of noniterative integration methods with desired numerical dissipation", J. Numeric. Method. Eng., 100, 62-86. https://doi.org/10.1002/nme.4720.   DOI
6 Chang, S-Y., Wu, T-H. and Tran, N-C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815.   DOI
7 Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", J. Numeric. Method. Eng., 37(23), 3961-3976. https://doi.org/10.1002/nme.1620372303.   DOI
8 Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, Computers and Structures Inc., Berkeley, CA, USA.
9 Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3.   DOI
10 Soares Jr, D. (2019c), "A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis", J. Numeric. Method. Eng., 119(7), 590-617. https://doi.org/10.1002/nme.6064.   DOI
11 Soares Jr, D. and Wrobel, L.C. (2019), "A locally stabilized explicit approach for nonlinear heat conduction analysis", Comput. Struct., 214, 40-47. https://doi.org/10.1016/j.compstruc.2019.01.004.   DOI
12 Subbaraj, K. and Dokainish, M.A. (1989), "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5.   DOI
13 Tamma, K.K. and Namburu, R.R. (1990), "A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations", J. Numeric. Method. Eng., 29(7), 1441-1454. https://doi.org/10.1002/nme.1620290705.   DOI
14 Tamma, K.K., Zhou, X. and Sha, D. (2000), "The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications", Archives Comput. Methods Eng., 7(2), 67-290. https://doi.org/10.1007/BF02736209.   DOI
15 Wen, W.B., Jian, K.L., and Luo, S.M. (1980), "An explicit time integration method for structural dynamics using septuple B-spline functions", J. Numeric. Method. Eng., 97(9), 629-657. https://doi.org/10.1002/nme.4599.
16 Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1980), "An alpha modification of Newmark's method", J. Numeric. Method. Eng., 15(10), 1562-1566. https://doi.org/10.1002/nme.1620151011.   DOI
17 Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronautic. Sci., 17(9), 540-550. https://doi.org/10.2514/8.1722.   DOI
18 Yin, S.H. (2013), "A new explicit time integration method for structural dynamics", J. Struct. Stability Dynam., 13(3), https://doi.org/10.1142/S021945541250068X.
19 Fung, T.C. (2003), "Numerical dissipation in time-step integration algorithms for structural dynamic analysis", Progress Struct. Eng. Mater., 5(3), 167-180. https://doi.org/10.1002/pse.149.   DOI
20 Hilber, H.M., Hughes, T.J.R and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dynam., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306.   DOI
21 Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA.
22 Hulbert, G.M. and Chung, J. (1996), "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation", Comput. Method. Appl. Mech. Eng., 137(2), 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5.   DOI
23 Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-504. https://doi.org/10.12989/sem.2017.6.4.495.   DOI
24 Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Division, 85(3), 67-94.   DOI
25 Noh, G. and Bathe, K.J. (2013), "An explicit time integration scheme for the analysis of wave propagations", Comput. Struct., 129, 178-193. https://doi.org/10.1016/j.compstruc.2013.06.007.   DOI
26 Noh, G. and Bathe, K.J. (2018), "Further insights into an implicit time integration scheme for structural dynamics", Comput. Struct., 202, 15-24. https://doi.org/10.1016/j.compstruc.2018.02.007.   DOI
27 Shojaee, S., Rostami, S. and Moeinadini, A. (2011), "The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions", Struct. Eng. Mech., 38(2), 211-229. https://doi.org/10.12989/sem.2011.38.2.211.   DOI
28 Noh, G. and Bathe, K.J. (2019), "The Bathe time integration method with controllable spectral radius: The ${\rho}^{{\infty}}$-Bathe method", Comput. Struct., 212, 299-310. https://doi.org/10.1016/j.compstruc.2018.11.001.   DOI
29 Park, K.C. (1975), "An improved stiffly stable method for direct integration of nonlinear structural dynamic equations", J. Appl. Mech., 42(2), 464-470.   DOI
30 Rezaiee-Pajand, M. and Karimi-Rad, M. (2018), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math., 37(3), 3431-3454. https://doi.org/ 10.1007/s40314-017-0520-3.   DOI
31 Shojaee, S., Rostami, S. and Abbasi, A. (2015), "An unconditionally stable implicit time integration algorithm: modified quartic B-spline method", Comput. Struct., 153, 98-111. https://doi.org/10.1016/j.compstruc.2015.02.030.   DOI
32 Soares, D. (2011), "A new family of time marching procedures based on Green's function matrices", Comput. Struct., 89(1-2), 266-276. https://doi.org/10.1016/j.compstruc.2010.10.011.   DOI
33 Soares, D. (2015), "A simple and effective new family of time marching procedures for dynamics", Comput. Method. Appl. Mech. Eng., 283, 1138-1166. https://doi.org/10.1016/j.cma.2014.08.007.   DOI
34 Soares, D. (2016), "A novel family of explicit time marching techniques for structural dynamics and wave propagation models", Comput. Method. Appl. Mech. Eng., 311(3), 838-855. https://doi.org/10.1016/j.cma.2016.09.021.   DOI
35 Soares, D. (2017), "A simple and effective single-step time marching technique based on adaptive time integrators", J. Numeric. Method. Eng., 109(9), 1344-1368. https://doi.org/10.1002/nme.5329.   DOI
36 Soares Jr, D. and Grosseholz, G. (2018), "Nonlinear structural dynamic analysis by a stabilized central difference method", Eng. Struct., 173, 383-392. https://doi.org/10.1016/j.engstruct.2018.06.115.   DOI
37 Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, NJ, USA.