• Title/Summary/Keyword: Adaptive Robust Control

Search Result 537, Processing Time 0.025 seconds

MRAC방식에 의한 산업용 로보트 매니퓰레이터의 실시간 제어를 위한 견실한 제어기 설계

  • 한성현;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.160-165
    • /
    • 1989
  • This paper deals with the robust controller design of robotic manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach followed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with assumption that process is characterized by a linear model remaining time invariant during adaptation process. A computer simulation has been performed to demonstrate the performance of the designed control system in task coordinates for stanford manipulator with payload and disturbances.

  • PDF

ADAPTIVE OPTIMAL OUTPUT FEEDBACK CONTROL

  • Sin, Hyeong-Cheol;Byeon, Jeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1981.07a
    • /
    • pp.146-153
    • /
    • 1981
  • A practical and robust control scheme is suggested for MIMO discrete time processes with real simple poles. This type of control scheme, having the advantages of both the adaptiveness and optimality, may be successfully applicable to structured dynamic controllers for plants whose parameters are slowly time-varying. The identification of the process parameters is under-taken in ARMA form and the optimization of the feedback gain matrix is performed in the state space representation with regard to a standard quadratic criterion.

  • PDF

Design of the Power System Stabilizer Using Parallel Structured Fuzzy Adaptive Controller (병렬형 구조의 적응 퍼지 제어기를 이용한 전력계통 안정화 장치의 설계)

  • Jo, Yeong-Wan;Kim, Seung-U;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.702-704
    • /
    • 1995
  • In this paper, using a new adaptive fuzzy controller we have designed a power system stabilizer. The adaptive fuzzy controller constitutes of several parallel fuzzy controller. Each of them can maintain the robust stability for a specified parametric uncertainty region. If the parametric variation is so large that a rule-base cannot cope with that parametric region, the other appropriate rule-base is selected to control. Applying adaptive fuzzy controller to single machine infinite bus system, we simulate the stability of the system and compare the performance with conventional PSS controller.

  • PDF

A study on the Adaptive Neural Controller with Chaotic Neural Networks (카오틱 신경망을 이용한 적응제어에 관한 연구)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.

  • PDF

Detection of Voltage Sag using An Adaptive Extended Kalman Filter Based on Maximum Likelihood

  • Xi, Yanhui;Li, Zewen;Zeng, Xiangjun;Tang, Xin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1016-1026
    • /
    • 2017
  • An adaptive extended Kalman filter based on the maximum likelihood (EKF-ML) is proposed for detecting voltage sag in this paper. Considering that the choice of the process and measurement error covariance matrices affects seriously the performance of the extended Kalman filter (EKF), the EKF-ML method uses the maximum likelihood method to adaptively optimize the error covariance matrices and the initial conditions. This can ensure that the EKF has better accuracy and faster convergence for estimating the voltage amplitude (states). Moreover, without more complexity, the EKF-ML algorithm is almost as simple as the conventional EKF, but it has better anti-disturbance performance and more accuracy in detection of the voltage sag. More importantly, the EKF-ML algorithm is capable of accurately estimating the noise parameters and is robust against various noise levels. Simulation results show that the proposed method performs with a fast dynamic and tracking response, when voltage signals contain harmonics or a pulse and are jointly embedded in an unknown measurement noise.

A Robust Fingertip Extraction and Extended CAMSHIFT based Hand Gesture Recognition for Natural Human-like Human-Robot Interaction (강인한 손가락 끝 추출과 확장된 CAMSHIFT 알고리즘을 이용한 자연스러운 Human-Robot Interaction을 위한 손동작 인식)

  • Lee, Lae-Kyoung;An, Su-Yong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.328-336
    • /
    • 2012
  • In this paper, we propose a robust fingertip extraction and extended Continuously Adaptive Mean Shift (CAMSHIFT) based robust hand gesture recognition for natural human-like HRI (Human-Robot Interaction). Firstly, for efficient and rapid hand detection, the hand candidate regions are segmented by the combination with robust $YC_bC_r$ skin color model and haar-like features based adaboost. Using the extracted hand candidate regions, we estimate the palm region and fingertip position from distance transformation based voting and geometrical feature of hands. From the hand orientation and palm center position, we find the optimal fingertip position and its orientation. Then using extended CAMSHIFT, we reliably track the 2D hand gesture trajectory with extracted fingertip. Finally, we applied the conditional density propagation (CONDENSATION) to recognize the pre-defined temporal motion trajectories. Experimental results show that the proposed algorithm not only rapidly extracts the hand region with accurately extracted fingertip and its angle but also robustly tracks the hand under different illumination, size and rotation conditions. Using these results, we successfully recognize the multiple hand gestures.

Sensorless Speed Control of IPMSM Using an Extended Kalman Filter and Nonlinear and Adaptive Back-Stepping Control Technique (비선형 적응 백스텝핑 제어 기법과 EKF를 적용한 IPMSM의 센서리스 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1413-1422
    • /
    • 2012
  • Adaptive back stepping control technique may provide robust control characteristics under parameter perturbation caused by changing external condition. In order to synthesize a high-precision velocity controller for IPMSM(Interior Permanent Magnet Synchronous Motor) using this method, the period of control loop should be very small. However, because of the resolution of the encoder for speed measurement, control cycle is limited, which makes it difficult to improve the performance of the controller. This paper proposes a velocity controller design method based on nonlinear adaptive back-stepping method to accomplish fast and accurate performance. Here, an EKF(Extended Kalman Filter) method is incorporated for the estimation of the motor speed into the design of a speed controller using adapted back-stepping control technique. The performance of the proposed controller is demonstrated through simulation using PSIM.

Stabilization control of inverted pendulum by adaptive fuzzy inference technique (적응 퍼지추론 기법에 의한 도립진자의 안정화 제어)

  • 전부찬;심영진;이준탁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.207-210
    • /
    • 1997
  • In this paper, a hierarchical fuzzy controller for stabilization of the inverted pendulum system is proposed. The facility of this hierarchical fuzzy controller which has a swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point (.PHI.$_{VEq}$ ) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed hierarchical fuzzy inference made substantially the inverted pendulum system robust and stable.e.

  • PDF

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.

Robust control of Nonlinear System Using Multilayer Neural Network (다층 신경회로망을 이용한 비선형 시스템의 견실한 제어)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.243-248
    • /
    • 2013
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.