• Title/Summary/Keyword: Adaptive Robust Control

Search Result 537, Processing Time 0.031 seconds

Adaptive Fuzzy Controller for the Nonlinear System with Unknown Sign of the Input Gain

  • Park Jang-Hyun;Kim Seong-Hwan;Moon Chae-Joo
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 2006
  • We propose and analyze a robust adaptive fuzzy controller for nonlinear systems without a priori knowledge of the sign of the input gain function. No assumptions are made about the type of nonlinearities of the system, except that such nonlinearities are smooth. The uncertain nonlinearities are captured by the fuzzy systems that have been proven to be universal approximators. The proposed control scheme completely overcomes the singularity problem that occurs in the indirect adaptive feedback linearizing control. Projection in the estimated parameters and switching in the control input are both not required. The stability of the closed-loop system is guaranteed in the Lyapunov viewpoint.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

Control of induction motors using adaptive fuzzy feedback linearization techniques (적응 퍼지 궤환선형화기법을 이용한 유도전동기의 제어)

  • 류지수;김정중;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1253-1256
    • /
    • 1996
  • In this paper, a new nonlinear feedback linearization control scheme for induction motors is developed. The control scheme employs a fuzzy nonlinear identification scheme based on fuzzy basis function expansion to adoptively compensate the parameter variations, i.e. rotor resistance, mutual and self inductance etc. An important feature of the proposed control scheme is to incorporate the sliding mode controller into the scheme to speed up convergence rate. Simulation tests show the robust behavior of the proposed controller in the presence of the parameter uncertainties of the machine.

  • PDF

Neural Network Controller with Dynamic Structure for nonaffine Nonlinear System (불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 신경망 제어기 설계)

  • 박장현;서호준;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.384-384
    • /
    • 2000
  • In adaptive neuro-control, neural networks are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design fur nonlinear system using neural networks considers the affine system with fixed number of neurons. This paper considers nonaffne nonlinear systems and dynamic variation of the number of neurons. Control laws and adaptive laws for weights are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Two-Link Manipulator Control Using Indirect Adaptive Fuzzy Controller

  • N., Waurajitti;J., Ngamwiwit;T., Benjanarasuth;H., Hirata;N., Komine
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.445-445
    • /
    • 2000
  • This paper proposes the MIMO indirect adaptive fuzzy controller to control the two-link manipulators. The input-output linearization technique, equivalent control input plus integral term, augmented error model and recursive least square adaptive law are used fer the controller. The linear type of fuzzifier-defuzzifier fuzzy logic system used for nonlinear function makes easy to farm the error model and able to follow the adaptive system approach. Such that control approach, the control system is not required joint speed and accerelation measurement and easy to implement and tune. The simulation results showed that the proposed controller has good control performance, stability, very small tracking error, decoupling, fast convergence, robust to parameter variation and load.

  • PDF

MIMO Robust Adaptive Fuzzy Controller

  • Zhang, Huaguang;Bien, Zeungnam;Yinguo, Piao
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.341-345
    • /
    • 1997
  • A novel fuzzy basis function vector-based adaptive control approach for Multi-input and Multi-output(MIMO) system is presented in this paper, in which the nonlinear plants is first linearised, the fuzzy basis function vector is then introduced to adaptively learn the upper bound of the system uncertainty vector, and its output is used as the parameters of the compensator in the sense that both the asymptotic error convergence can be obtained for the colsed loop nonlinear control system.

  • PDF

A Study on Tracking Control of Omni-Directional Mobile Robot Using Fuzzy Multi-Layered Controller (퍼지 다층 제어기를 이용한 전방향 이동로봇의 추적제어에 관한 연구)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1786-1795
    • /
    • 2011
  • The trajectory control for omni-directional mobile robot is not easy. Especially, the tracking control which system uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy multi-layered algorithm. The fuzzy control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. It explains the architecture of a fuzzy adaptive controller using the robust property of a fuzzy controller. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system; related mathematical theorems and their proofs are also given. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Rubust Vector Control of an Induction Motor without Speed Sensor (유도전동기의 속도 센서 없는 견실한 벡터 제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Kim, Nam-Jeung;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.55-63
    • /
    • 1997
  • The purpose of this paper is to realize robust vector control of an induction motor without speed sensor. In order to do it, the speed of an induction motor is estimated using model reference adaptive system(MRAS) and two rotor flux observers which have robustness to the parameter variation are employed as the reference model and the adjustable model in MRAS speed estimator. The MRAS-based overall control scheme has been implemented on 2.2kW induction motor control system and it is verified that the proposed speed sensorless control scheme is more stable and robust than the conventional schemes.

  • PDF