• 제목/요약/키워드: Adaptive Regularization

검색결과 43건 처리시간 0.029초

웨이블릿 압축 동영상의 정칙화 기반 적응적 개선에 관한 연구 (Adaptive Regularized Enhancement of Wavelet Compressed Video)

  • 정정훈;기현종;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.39-44
    • /
    • 2004
  • 움직임 보상을 고려한 3차원 웨이블릿 변환은 공간적, 시간적인 상관관계에 중복된 정보를 효과적으로 제거한다. 그러나 웨이블릿 방식으로 압축된 영상이라 하더라도 압축률이 높은 경우 고주파 서브밴드의 변환계수가 상당수 손실되어 압축복원 시에 링 현상과 같은 왜곡이 생긴다. 본 논문에서는 이러한 3차원 웨이블릿의 압축왜곡을 줄이기 위하여 적응적 반복 복원 기법을 사용하는 새로운 알고리듬을 제안하였다. 제안된 적응적 기법에서는 에지의 방향에 따라 서로 다른 고역통과필터를 정칙화 복원에 사용하였다.

LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법 (Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF)

  • 박성현;강석훈
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.15-23
    • /
    • 2022
  • 지속적 학습 환경을 위한 학습 방법 중 LwF(Learning without Forgetting)는 정규화 강도가 고정되어 있어 다양한 데이터가 들어오는 환경에서 성능이 하락 할 수 있다. 본 논문에서는 학습하려는 데이터의 특징을 파악하여 가중치를 가변적으로 설정할 수 있는 방법을 제안하고, 실험으로 성능을 검증한다. 상관 관계와 복잡도를 이용하여 적응적으로 가중치를 적용하도록 하였다. 평가를 위해 다양한 데이터를 가진 태스크가 들어오는 시나리오를 구성하여 실험을 진행하였고, 실험 결과 새로운 태스크의 정확도가 최대 5%, 이전 태스크의 정확도가 최대 11% 상승하였다. 또한, 본 논문에서 제안한 알고리즘으로 구한 적응적 가중치 값은, 각 실험 시나리오마다 반복적 실험에 의해, 수동으로 계산한 최적 가중치 값에 접근한 것을 알 수 있었다. 상관 계수 값은 0.739 이었고, 전체적으로 평균 태스크 정확도가 상승하였다. 본 논문의 방법은, 새로운 태스크를 학습할 때마다 적절한 람다 값을 적응적으로 설정하였으며, 본 논문에서 제시한 여러 가지 시나리오에서 최적의 결과값을 도출하고 있다는 것을 알 수 있다.

부정확한 부화소 단위의 위치 추정 오류에 적응적인 정규화된 고해상도 영상 재구성 연구 (Regularized Adaptive High-resolution Image Reconstruction Considering Inaccurate Subpixel Registration)

  • 이은실;변민;강문기
    • 방송공학회논문지
    • /
    • 제8권1호
    • /
    • pp.19-29
    • /
    • 2003
  • 기존의 영상 획득 시스템들이 어느 정도의 엘리어싱을 허용하도록 제작되어왔음에도 불구하고, 고해상도 영상에 대한 요구는 점점 더 증가하고 있다. 본 논문에서는 부정확한 부화소 단위의 위치 추정 오류를 고려한 고해상도 재구성 알고리즘을 제안한다. 부정확한 부화소 위치 추정 오류로 인해 생기는 불량위치문제(ill-posedness)를 해결하기 위해 정규화 반복 연산법을 적용하였다, 특히 여러 장의 저해강도 영상들을 개별적으로 고려하기에 적합한 다중채널 영상 재구성 방법을 도입하였다. 각 저해상도 영상에서 발생하는 움직임 추정오류는 서로 다른 경향성을 나타내므로, 정규화 파라미터들은 각 채널에 맞게 결정되어야 한다. 이를 위해 정규화 파라미터들을 자동으로 결정하는 방법을 제안한다. 제안한 알고리즘은 움직임 추정 오류에 매우 안정하며, 원 영상과 잡음에 대한 사전정보를 필요로 하지 않는다. 또한 주관적인 측면과 객관적인 측면에서 모두 우수한 결과를 실험적으로 보인다.

Regularized Multichannel Blind Deconvolution Using Alternating Minimization

  • James, Soniya;Maik, Vivek;Karibassappa, K.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.413-421
    • /
    • 2015
  • Regularized Blind Deconvolution is a problem applicable in degraded images in order to bring the original image out of blur. Multichannel blind Deconvolution considered as an optimization problem. Each step in the optimization is considered as variable splitting problem using an algorithm called Alternating Minimization Algorithm. Each Step in the Variable splitting undergoes Augmented Lagrangian method (ALM) / Bregman Iterative method. Regularization is used where an ill posed problem converted into a well posed problem. Two well known regularizers are Tikhonov class and Total Variation (TV) / L2 model. TV can be isotropic and anisotropic, where isotropic for L2 norm and anisotropic for L1 norm. Based on many probabilistic model and Fourier Transforms Image deblurring can be solved. Here in this paper to improve the performance, we have used an adaptive regularization filtering and isotropic TV model Lp norm. Image deblurring is applicable in the areas such as medical image sensing, astrophotography, traffic signal monitoring, remote sensors, case investigation and even images that are taken using a digital camera / mobile cameras.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

정착화된 영상복원을 이용한 공간 적응적 영상보간 (Spatially Adaptive Image Interpolation using Regularized Iterative Image Restoration Technique)

  • 신정호;정정훈;백준기
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.116-122
    • /
    • 1998
  • 본 논문에서는 원영상이 가지고 있는 고주파 성분을 효율적으로 복원할 수 있는 공간 적응적 영상보간(image interpolation) 알고리듬을 제안한다. 영상이 갖고 있는 선험적 정보(a priori knowledge)를 보간 과정에 적용하기 위해서는, 우선 저해상도의 영상 시스템을 나타내는 분리 가능한(separable) 2차원 열화모델(degradation model)을 결정한다. 이렇게 결정된 열화 모델에 따라 다섯 가지의 서로 다른 제약 조건들을 사용하여 정칙화에 기반을 둔 공간 적응적 영상보간 알고리듬을 제안한다. 또한, 제안된 알고리듬의 수렴성을 분석하고, 실험 결과를 토대로 비적응적인 방법과 제안된 알고리듬의 성능을 비교한다.

  • PDF

CLS 기반 공간 적응적 영상복원 (Spatially Adaptive CLS Based Image Restoration)

  • 백준기;문준일;김상구
    • 한국통신학회논문지
    • /
    • 제21권10호
    • /
    • pp.2541-2551
    • /
    • 1996
  • 인간의 시각체계는 영상의 밝기의 정도가 균일한 연에서는 잡음에 민감하지만, 변화하는 부분에서는 에지(edge)의 정도가 심할수록 잡음에 둔감하고, 에지부분에서 멀어질수록 잡음에 대한 민감도가 급격하게 증가한다. 이러한 인간의 시각 특성에 기반을 둔 여러가지 영상복원 방식이 제안되고 있는데, 본 논문에서는 영상을 복원함에 있어서 윤곽 부분에서는 변화하는 부분의 선명도를 높이고, 영상이 평탄한 부분에서는 잡음 성분을 많이 억제 시켜서 영상을 주관적으로 향상시키는 적응적 영상복원 방식을 소개한다. 이 방법은 에지 검출을 하기 위해서 각 화소를 기준으로 지역 분산값(local variance)을 사용하여 시각 함수(visibility function)를 구하고, 이 값에 따라 정규화 매개변수를 변환시켜 적응적으로 영상을 복원한다. 즉 영상을 평탄한 부분에서 에지부분까지 몇 단계로 나누어서 각각의 단계에 해당하는 유한 임펄스 CLS 필터를 구현해서 영상을 복원한다.

  • PDF

Edge 가중치를 이용한 적응적인 POCS Demosaicking 알고리즘 (Weighted Edge Adaptive POCS Demosaicking Algorithm)

  • 박종수;이성원
    • 대한전자공학회논문지SP
    • /
    • 제45권3호
    • /
    • pp.46-54
    • /
    • 2008
  • 최근 대부분의 보급형 CCD/CMOS 영상 센서는 크기와 비용을 줄이기 위해 한 가지 색상만 선택적으로 통과시키는 CFA(Color Filter Array)를 사용한다. 따라서 원래의 컬러 영상을 복원하기 위하여 패턴인식이나, 정규화 등을 이용한 많은 알고리즘이 제안되었으나, 지엽적인 색상오류, zipper 효과 등의 오류를 충분히 제거하지 못하고 있다. 본 논문에서는 전체 영상의 PSNR 뿐 아니라 주관적인 화질에 영향을 주는 에지 부분에서의 오류를 줄이기 위하여, 기존에 제시되었던 방법인 POCS(Projection Onto Convex Sets) 알고리즘을 기반으로 에지 가중치를 적응적으로 적용하였다. 그 결과 강한 에지 부분에서 보다 효율적인 컬러복원을 할 수 있었다.

Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation

  • Zhou, Dabiao;Wang, Dejiang;Huo, Lijun;Jia, Ping
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.752-761
    • /
    • 2016
  • Hyperspectral images are often contaminated with stripe noise, which severely degrades the imaging quality and the precision of the subsequent processing. In this paper, a variational model is proposed by employing spectral-spatial adaptive unidirectional variation and a sparse representation. Unlike traditional methods, we exploit the spectral correction and remove stripes in different bands and different regions adaptively, instead of selecting parameters band by band. The regularization strength adapts to the spectrally varying stripe intensities and the spatially varying texture information. Spectral correlation is exploited via dictionary learning in the sparse representation framework to prevent spectral distortion. Moreover, the minimization problem, which contains two unsmooth and inseparable $l_1$-norm terms, is optimized by the split Bregman approach. Experimental results, on datasets from several imaging systems, demonstrate that the proposed method can remove stripe noise effectively and adaptively, as well as preserve original detail information.

Adaptive Weight Collaborative Complementary Learning for Robust Visual Tracking

  • Wang, Benxuan;Kong, Jun;Jiang, Min;Shen, Jianyu;Liu, Tianshan;Gu, Xiaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.305-326
    • /
    • 2019
  • Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.