Adaptive Regularized Enhancement of Wavelet Compressed Video

웨이블릿 압축 동영상의 정칙화 기반 적응적 개선에 관한 연구

  • 정정훈 (중앙대학교 첨단영상대학원 영상공학과) ;
  • 기현종 (중앙대학교 첨단영상대학원 영상공학) ;
  • 이성원 (중앙대학교 첨단영상대학원 영상공학) ;
  • 백준기 (중앙대학교 첨단영상대학원 영상공학과)
  • Published : 2004.07.01

Abstract

The three-dimensional (3D) wavelet transform with motion compensation is suitable for very high quality video coding due to both spatial and temporal decorrelations. However, it still suffers from image degradation such as ringing artifact and afterimage because of the loss of high frequency components by quantization. This paper proposes an iterative regularized enhancement of the motion-compensated 3D wavelet coded video. We also propose the adaptive implementation of the constraints for the regularization. It selectively suppresses the high frequency component along only the corresponding edge direction.

움직임 보상을 고려한 3차원 웨이블릿 변환은 공간적, 시간적인 상관관계에 중복된 정보를 효과적으로 제거한다. 그러나 웨이블릿 방식으로 압축된 영상이라 하더라도 압축률이 높은 경우 고주파 서브밴드의 변환계수가 상당수 손실되어 압축복원 시에 링 현상과 같은 왜곡이 생긴다. 본 논문에서는 이러한 3차원 웨이블릿의 압축왜곡을 줄이기 위하여 적응적 반복 복원 기법을 사용하는 새로운 알고리듬을 제안하였다. 제안된 적응적 기법에서는 에지의 방향에 따라 서로 다른 고역통과필터를 정칙화 복원에 사용하였다.

Keywords

References

  1. S,J. Choi and J.W. Woods, 'Motion-Compensated 3-D Subband Coding of Video,' IEEE transactions on image processing, vol.8, no.2, pp. 155-167, Feb. 1999 https://doi.org/10.1109/83.743851
  2. J.R. Ohm, 'Three Dimensional Subband Coding with Motion Compensation,' IEEE transactions on image processing, vol.3, no.5, pp. 559-571, Sept. 1994 https://doi.org/10.1109/83.334985
  3. C. I. Podilchuk, N. S. Jayant, and N. Farvardin, 'Three-dimensional subband coding of video,' IEEE Trans. Image Processing, vol. 4, no. 2, pp. 125-139, Feb. 1995 https://doi.org/10.1109/83.342187
  4. I.K. Levy and R. Wilson, 'Three Dimensional Wavelet Transform Video Compression,' Proceedings of the IEEE Multimedia Systems '99, vol. 2, pp. 924-928, June 1999 https://doi.org/10.1109/MMCS.1999.778612
  5. B. Pesquet-Popescu, M. Benetiere and V. Bottreau, 'Embedded Color Coding For Scalable 3D Wavelet Video Compression,' Proc. SPIE Visual Commun. Image Processing, 2000 https://doi.org/10.1117/12.386637
  6. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, 'Image coding using the wavelet transform,' IEEE Trans. Image Processing, pp. 205-220, Apr. 1992 https://doi.org/10.1109/83.136597
  7. J. M. Shapiro, 'Embedded image coding using zerotrees of wavelet coefficients', Signal Processing, IEEE Trans. on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], Vol. 41 Issue: 12, pp. 3445-3462, Dec. 1993 https://doi.org/10.1109/78.258085
  8. A. K. Katsaggelos, 'Iterative Image Restoration Algorithms,' Optical Engineering, vol. 28, no.7, pp. 735-748, July 1989
  9. A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989
  10. S. Mallat, S. Zhong, 'Chracterization Of Signals From Multiscale Edges,' IEEE transactionson pattern analysis and machine intelligence, vol. 14, no.7, July 1992 https://doi.org/10.1109/34.142909
  11. J. H. Jung, J. H. Shin, and J. K Paik, 'Spatio-temporally adaptive image sequence interpolation,' Proc. 1998 Int. Tech. Conf. Circuits, Systems, Computers, Communications, vol. 1, pp. 43-46, July 1998
  12. J. H. Jung, S. C. Joung and J. K. Paik, 'Regularized constrained restoration of wavelet compressed image,' Proc, SPIE Visual Commn. Image Processing, 2000 https://doi.org/10.1117/12.386629
  13. 정정훈, 정시창, 백준기, '웨이블릿 압축된 영상의 정칙화 기반 후처리에 관한 연구,' 대한전자공학회논문지, 36권, 11호, pp. 1290-1299, 1999년 11월
  14. M. G. Kang and A. K. Katsaggelos, 'General choice of the regularization functional in regularized image restoration,' IEEE Trans. Image processing, vol. 4, no. 5, pp. 594-602, May 1995 https://doi.org/10.1109/83.382494