• 제목/요약/키워드: Adaptive Reconstruction

검색결과 178건 처리시간 0.025초

3차원 형체복원에 있어서 측정면에 적응적인 초점화소 탐색영역 결정기법 (Shape Adaptive Searching Region to Find Focused Image Points in 3D Shape Reconstruction)

  • 김현태;한문용;홍민철;차형태;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.77-77
    • /
    • 2000
  • The shape of small or curved object is usually reconstructed using a single camera by moving its lens position to find a sequence of the focused images. Most conventional methods have used a window with fixed shape to test the focus measure, which resulted in a deterioration of accuracy. To solve this problem, this paper proposes a new approach of using a shape adaptive window. It estimates the shape of the object at every step and applies the same shape of window to calculate the focus measure. Focus measure is based on the variance of the pixels inside the window. This paper includes the experimental results.

  • PDF

PRA의 성능비교및 운동 보상형 보간알고리듬을 이용한 동영상 감축에 관한 연구 (Performance comparison of pel recursive algorithm and dynamic image comprassion using motion compensating interpolation algorithm)

  • 오진성;한영오;조병걸;이용천;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.178-182
    • /
    • 1988
  • In this study, the motion compensating interpolation algorithm is presented. The presented algorithm allows the unblutted reconstruction of omitted frames. It is shown that the Walker & Rao's estimation algorithm using modified displaced frame difference combined with rectangulat adaptive measurement window increases the reliability of the estimation results. The remark ably improved image quality is achieved by change detection and segmentation.

  • PDF

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.91-96
    • /
    • 2001
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamics, and a sliding mode control is introduced to attenuate the effects of the neural network's reconstruction errors and the disturbances of AUV's dynamics. The presented controller is consist of three parallel schemes; linear feedback control, sliding mode control and neural network. Lyapunov theory is used to guarantee the asymptotic convergence of trajectory tracking errors and the neural network's weights errors. Numerical simulations for motion control of an AUV are performed to illustrate to effectiveness of the proposed techniques.

  • PDF

선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구 (A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light)

  • 박승규;백성훈;김대규;장원석;이일근;김철중
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

He-Ne 레이저 빔 품질 진단용 고속파면센서 개발 (The Development of High Speed Wavefront Sensor for Diagnosis of Beam Quality of He-Ne Laser)

  • 이영철;이재일;강응철
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.160-167
    • /
    • 2007
  • In this paper, we presented the development results of high speed wavefront sensor which is used in diagnosing the beam quality of He-Ne laser for adaptive optics system. The beam quality information of laser in AO system is necessarily required for diagnosing the optical components or correcting the distorted wavefront afterward. According to system requirements, normally, it is requested that there are high precision of measurement and real time processing speed. The developed wavefront sensor in this paper achieved maximum 30Hz of measurement rate and ${\lambda}/20(\;{@}\;{\lambda}=0.6328{\mu}m)$ of measurement precision in RMS. We also applied the developed into an experimental adaptive system and verified the performance of it by correcting the aberrated wavefront with a rate of 30Hz and $\lambda$/20 precision using the combination of the developed and PID control algorithm.

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

Image deblurring via adaptive proximal conjugate gradient method

  • Pan, Han;Jing, Zhongliang;Li, Minzhe;Dong, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4604-4622
    • /
    • 2015
  • It is not easy to reconstruct the geometrical characteristics of the distorted images captured by the devices. One of the most popular optimization methods is fast iterative shrinkage/ thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. It contains three stages. At first stage, a series of adaptive penalty matrices are generated iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational complexity of the resulting sub-problem, a practical solution is presented, which is characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting the structure of the problem. Third, a correction step is introduced to improve the estimated accuracy. The numerical experiments of the proposed algorithm, in comparison to the favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its potential.

화소 단위 적응적 전달량 예측을 이용한 효율적인 안개 제거 기술 (A Dehazing Algorithm using the Prediction of Adaptive Transmission Map for Each Pixel)

  • 이상원;한종기
    • 방송공학회논문지
    • /
    • 제22권1호
    • /
    • pp.118-127
    • /
    • 2017
  • 본 논문에서는 안개가 제거된 영상의 색상 왜곡을 방지하기 위해서 영역 분할 방법이 적용된 대기값 추정 방법을 제안한다. 이때, 효과적인 영역 분할을 수행하기 위해서 문턱치 값을 이용하여 영역 분할을 수행할지 중단할지를 결정한다. 또한, 효율적인 전달량 맵을 얻기 위해서, 적응적 가중치 계수를 사용하여 픽셀 단위마다 적응적으로 전달량 예측을 수행한다. 이를 통해 색상이 안정적이면서 후광 효과가 발생하지 않는 안개제거 알고리즘을 제안한다.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

위성자료의 시계열 특성에 기반한 실시간 자료 재구축 (Reconstruction of Remote Sensing Data based on dynamic Characteristics of Time Series Data)

  • 정명희;이상훈;장석우
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.329-335
    • /
    • 2018
  • 여러 응용 분야에서 널리 활용되고 있는 위성영상은 지표면을 모니터링 하는데 매우 유용한 자료원이다. 위성자료는 원격 센서를 통해 획득되기 때문에 자료 획득시의 구름이나 에어로졸과 같은 관측 기상 상태나 센서 오작동상태에 따라 많은 노이즈와 에러가 포함되어 있다. 자료의 정확성은 자료 분석 결과의 정확성과 신뢰도에 영향을 주기 때문에 고품질 자료를 위한 노이즈 제거 및 자료 복원은 중요한 전처리(preprocessing) 과정이다. 본 연구에서는 다중주기 하모닉 모형을 이용하여 위성자료의 시계열적 동적 특성을 모형화하고 자료의 공간적 상관관계를 고려하여 적응적으로 자료복원을 수행하는 재구축 시스템을 제안하고 있다. 다중 주기에 기반을 둔 모형은 단일 주기보다 지표면의 연간 변화뿐 아니라 계절적 변화와 같이 내부적인 변화 패턴을 모형화 하는데 적합하다. 또한 기존에 제안된 복원 방법은 일정 기간의 전체 자료에 대한 복원 방법으로 실시간 복원법이 아니지만 제안된 방법은 실시간 자료 복원이 가능하여 위성자료 실시간 재구축을 위한 전처리 시스템의 알고리즘으로 활용될 수 있다. 제안된 방법은 먼저 시뮬레이션 자료를 통해 성능이 평가되었고 2011부터 2016년까지 6년간의 MODIS NDVI 자료에 적용하여 평가되었다. 실험 결과는 제안된 자료 복원 시스템이 위성영상 자료 분석을 위한 고품질 자료 재구축 방법으로 매우 유용함을 보여주고 있다.