• Title/Summary/Keyword: Adaptive Power Control

Search Result 663, Processing Time 0.03 seconds

In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling (엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측)

  • 최종근;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

Implementation of Adaptive Noise Canceller with Instantaneous Gain (순시 이득을 이용한 적응잡음제거기 구현)

  • Lee, Jae-Kyun;Kim, Chun-Sik;Lee, Chae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.756-763
    • /
    • 2009
  • The Least Mean Square (LMS) algorithm is often used to restore signal corrupted by additive noise. A major defect of this algorithm is that the excess Mean Square Error (EMSE) increases linearly according to speech signal power. This result reduces the efficiency of performance significantly due to the large EMSE around the optimum value. Choosing a small step size solves this defect but causes a slow rate of convergence. The step size must be optimized to satisfy a fast rate of convergence and minimize EMSE. In this paper, the Instantaneous Gain Control (IGC) algorithm is proposed to deal with the situation as it exists in speech signals. Simulations were carried out using a real speech signal combined with Gaussian white noise. Results demonstrate the superiority of the proposed IGC algorithm over the LMS algorithm in rate of convergence, noise reduction and EMSE.

High-Frequency Induction Heating System Design of a PFM and PWM method using Fuzzy Control (퍼지제어기를 이용한 PFM 방식과 PWM방식의 고주파 유도가열기의 설계)

  • 장종승;설재훈;박종오;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.43-49
    • /
    • 1998
  • This paper describes a phase-shift pulse-width modulation and pulse-frequency modulation seriesresonant high-frequency inverter using IGBT for the power control of high-frequency inductionheating using fuzzy, which is practically applied for 2 0- 5~0 0~~ ~in 1d uction-heating and meltingpov~er supply in industrial fields. The adaptive frequency tracking based phase-shifting PWMregillation scheme is presented in order to minimize switching losses. The trially-producedbreadboards using IGBT are succesfully demostrated and discussed.discussed.

  • PDF

Channel-Adaptive Mobile Streaming Video Control over Mobile WiMAX Network (모바일 와이맥스망에서 채널 적응적인 모바일 스트리밍 비디오 제어)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • Streaming video service over wireless and mobile communication networks has received significant interests from both academia and industry recently. Specifically, mobile WiMAX (IEEE 802.16e) is capable of providing high data rate and flexible Quality of Service (QoS) mechanisms, supporting mobile streaming very attractive. However, we need to note that streaming videos can be partially deteriorated in their macroblocks and/or slices owing to errors on OFDMA subcarriers, as we consider that compressed video sequence is generally sensitive to the error-prone channel status of the wireless and mobile network. In this paper, we introduce an OFDMA subcarrier-adaptive mobile streaming server based on cross-layer design. This streaming server system is substantially efficient to reduce the deterioration of streaming video transferred on the subcarriers of low power strength without any modifications of the existing schedulers, packet ordering/reassembly, and subcarrier allocation strategies in the base station.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

Adaptive Beamwidth Control Technique for Low-orbit Satellites for QoS Performance improvement based on Next Generation Military Mobile Satellite Networks (차세대 군 모바일 위성 네트워크 QoS 성능 향상을 위한 저궤도 위성 빔폭 적응적 제어 기법)

  • Jang, Dae-Hee;Hwang, Yoon-Ha;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.1-12
    • /
    • 2020
  • Low-Orbit satellite mobile networks can provide services through miniaturized terminals with low transmission power, which can be used as reliable means of communication in the national public disaster network and defense sector. However, the high traffic environment in the emergency preparedness situation increases the new call blocking probability and the handover failure probability of the satellite network, and the increase of the handover failure probability affects the QoS because low orbit satellites move in orbit at a very high speed. Among the channel allocation methods of satellite communication, the FCA shows relatively better performance in a high traffic environment than DCA and is suitable for emergency preparedness situations, but in order to optimize QoS when traffic increases, the new call blocking and the handover failure must be minimized. In this paper, we propose LEO-DBC (LEO satellite dynamic beam width control) technique, which improves QoS by adaptive adjustment of beam width of low-orbit satellites and call time of terminals by improving FCA-QH method. Through the LEO-DBC technique, it is expected that the QoS of the mobile satellite communication network can be optimally maintained in high traffic environments in emergency preparedness situations.

A Fast Anti-jamming Decision Method Based on the Rule-Reduced Genetic Algorithm

  • Hui, Jin;Xiaoqin, Song;Miao, Wang;Yingtao, Niu;Ke, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4549-4567
    • /
    • 2016
  • To cope with the complex electromagnetic environment of wireless communication systems, anti-jamming decision methods are necessary to keep the reliability of communication. Basing on the rule-reduced genetic algorithm (RRGA), an anti-jamming decision method is proposed in this paper to adapt to the fast channel variations. Firstly, the reduced decision rules are obtained according to the rough set (RS) theory. Secondly, the randomly generated initial population of the genetic algorithm (GA) is screened and the individuals are preserved in accordance with the reduced decision rules. Finally, the initial population after screening is utilized in the genetic algorithm to optimize the communication parameters. In order to remove the dependency on the weights, this paper deploys an anti-jamming decision objective function, which aims at maximizing the normalized transmission rate under the constraints of minimizing the normalized transmitting power with the pre-defined bit error rate (BER). Simulations are carried out to verify the performance of both the traditional genetic algorithm and the adaptive genetic algorithm. Simulation results show that the convergence rates of the two algorithms increase significantly thanks to the initial population determined by the reduced-rules, without losing the accuracy of the decision-making. Meanwhile, the weight-independent objective function makes the algorithm more practical than the traditional methods.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Channel Variation Tracking based Effective Preferred BS Selection Scheme of Idle Mode Mobile device for Mobile WiMAX System (Mobile WiMAX시스템에서 채널품질 변동추적을 이용한 유휴모드 이동단말의 효율적인 선호기지국 선택 방안)

  • Lee, Kang-Gyu;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.471-484
    • /
    • 2010
  • In the wireless communication systems, the power consumption of a mobile device is very important issue due to its battery limitations. Hence most of the standards for wireless networks including a mobile WiMAX system are supporting their own power saving mode in way that a mobile device is able to reduce its energy usage while in the mode. However, those standards just define the arrangement of special time intervals, called a paging listening interval, during which the device needs to receive the paging-related control messages, and they do not specify how to effectively reduce the power in many different network environments. This means the amount of power spent by the device is very dependent on the implementations of individual device-vendors, and undesirable paging loss may happen according to the channel conditions. To reduce unnecessary power usage and the risk of paging loss, this paper proposes the effective frequency/BS selection algorithm applicable to a mobile device operating in the power saving mode, which serves the device with better BS based on the tracking for channel variation. This algorithm consists of the channel estimation phase during each paging listening interval, the tracking phase for the measured results, the frequency reselection phase based on the tracking activity, and the preferred BS reselection phase. Thus the proposed method can improve the paging performance while the device is moving in the network. Also the simulation result shows that the presented scheme is superior to other candidates in energy efficiency due to the channel-adaptive frequency/BS selection.

Design and Implementation of a new aging sensing circuit based on Flip-Flops (플립플롭 기반의 새로운 노화 센싱 회로의 설계 및 구현)

  • Lee, Jin-Kyung;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.33-39
    • /
    • 2014
  • In this paper, a new on-chip aging sensing circuit based on flip-flops is proposed to detect a circuit failure of MOSFET digital circuits casued by aging phenomenon such as HCI and BTI. The proposed circuit uses timing windows to warn against a guardband violation of sequential circuits, and generates three warning bits right before circuit failures occur. The generated bits can apply to an adaptive self-tuning method for reliable system design as control signals. The aging sensor circuit has been implemented using 0.11um CMOS technology and evaluated by $4{\times}4$ multiplier with power gating structure.