• 제목/요약/키워드: Adaptive Pd Control

검색결과 59건 처리시간 0.031초

Fuzzy proportional -derivative controller with adaptive control resolution

  • Oh, Seok-Yong;Park, Dong-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.135-137
    • /
    • 1995
  • A new design method is proposed for a fuzzy PD controller. By analyzing phase plane characteristics we can build and optimize the rule base of fuzzy logic controller. Also, a new gain tuning method is used to improve performance in the transient and steady state. The improved performance of the new methodology is shown by an application to the design of control system with a highly nonlinear actuator.

  • PDF

로보트 매니퓰레이터의 비집중 적응제어에 관한 연구 (A study on decentralized adaptive control of robot manipulator)

  • 이상철;박성기;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.183-187
    • /
    • 1989
  • This paper presents on approach to the position control of a robot manipulator by using a decentralized adaptive control scheme. The large scale system is regarded as the system which consists of many subsystems having interconnection. In each subsystem, a local control system is composed by feedforward and feedback component, one computes the nominal torque from the Newton-Euler equation, the other computes the perturbation equation which reduce the position error of the manipulator along the nominal trajectory. A computer simulation studies was conducted to evaluate and compare the performances of the proposed manipulator control scheme with those of the PD control and centralized control schemes.

  • PDF

Fuzzy Neural Network Active Disturbance Rejection Control for Two-Wheeled Self-Balanced Robot

  • Wang, Chao;Jianliang, Xiao;Zhang, Cheng
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.510-523
    • /
    • 2022
  • Considering the problems of poor control effect, weak disturbance rejection ability and adaptive ability of two-wheeled self-balanced robot (TWSBR) systems on undulating roads, this paper proposes a fuzzy neural network active disturbance rejection controller (FNNADRC), that is based on fuzzy neural network (FNN) for online correction of active disturbance rejection controller (ADRC)'s nonlinear control rate. Firstly, the dynamic model of the TWSBR is established and decoupled, the extended state observer (ESO) is used to compensate dynamically and linearize the upright and displacement subsystems. Then, the nonlinear PD control rate and FNN are designed, and the FNN is used to modify the control parameters of the nonlinear PD control rate in real time. Finally, the proposed control strategy is simulated and compared with the traditional ADRC and fuzzy active disturbance rejection controller (FADRC). The simulation results show that the control effect of the proposed control strategy is slightly better than ADRC and FADRC.

가중치 조정 알고리즘을 이용한 직류 전동기의 적응 퍼지제어 (Adaptive Fuzzy Control for a DC Mmotor Using Weight Tuning Algorithm)

  • 손재현;지성현;전병태;임종광;남문현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.360-363
    • /
    • 1993
  • Fuzzy Logic Control immitating human decision making process is a novel control strategy based on expert's experience and knowledge and many process designers are developing its applications. But it is difficult to obtain a set of rules from human operator. And there is a limitation on adjusting to environmental changes. In this paper, we proposed adaptive fuzzy algorithm to overcome these difficulties using weights added to the rules. To verify the validity of this control strategy, we have implemented this algorithm for a DC servo motor with PD-type fuzzy controller.

  • PDF

로봇 매니퓰레이터의 적응학습제어에 관한 연구 (Study of Adaptive Learning Control for Robot-Manipulator)

  • 최병현;국태용;최혁렬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.396-400
    • /
    • 1996
  • It is prerequisite to apply dynamics controller to control robot manipulator required to perform fast and Precise motion. In this Paper, we Propose an adaptive 3earning control method for the dynamic control of a robot manipulator. The proposed control scheme is made up of PD controller in the feedback loop and the adaptive learning controller in the feedforward loop. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a SCARA robot and experimentally verified.

  • PDF

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

공기압 실린더의 궤적 추적 제어를 위한 직접 적응제어 (Direct Adaptive Control for Trajectory Tracking Control of a Pneumatic Cylinder)

  • 이수한;장창훈
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2926-2934
    • /
    • 2000
  • This study presents a direct adaptive controller which is derived by using Lyapunovs direct methods for trajectory tracking control of a pneumatic cylinder. The structure of the controller is very simple and computationally efficient because it does not use either the dynamic model or the parameter values of the pneumatic system. The bounded stability of the system is shown in the presence of the bounded unmodeled dynamics. The bounded size of tracking errors can be made arbitrarily small without giving andy influences on either input or output variables. The trajectory tracking performance and the stability of the control system is verified experimentally. The results of the experiments show that the proposed controller tracks the given trajectories, sine function and cycloidal function trajectories, more accurately than PD controller does, and it stabilizes the system and adaptive variables.

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network)

  • 손종훈;황기현;김형수;박준호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어 (Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve)

  • 조승호;이민우
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.