• Title/Summary/Keyword: Adaptive Navigation System

Search Result 132, Processing Time 0.028 seconds

Energy Efficiency for Building Security Application of Adaptive Error Control and Adaptive Modulation (빌딩 보안 어플리케이션의 적응 오류제어와 적응 변조의 에너지 효율에 관한 연구)

  • Long, Bora;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.423-429
    • /
    • 2007
  • Since the wireless smart card has played a main role in the identification security application for the building access; this research has its purpose to improve the performance of the smart card system and aims to offer more convenient to user. The contactless cards do not require insertion into a card reader and can work up to centimeters away from the reading device. To be able to cope with this performance the controlling of power consumption through the adaptive modulation and error control is needed. This paper addresses a forward error control (FEC) scheme with the adaptive Reed-Solomon code rate and an M-ary frequency shift keying (M-FSK) modulation scheme with the varying symbol size M over the link. The result of comparing energy efficiencies of adaptive error correction and adaptive modulation to other various static schemes shows to save over 50% of the energy consumption.

  • PDF

Frequency Adaptive High Efficiency Class-E Amplifier in RFID System (RFID 시스템에 사용되는 주파수 적응형 고효율 Class-E 증폭기)

  • Kwan, Sang-Gun;Son, Gang-Ho;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.351-357
    • /
    • 2010
  • This paper proposes the adaptive class-E power amplifier with maintaining high power added efficiency (PAE) to apply RFID and wireless communication system. This switch mode amplifier is used a microprocessor to control a resonator circuits and to maintain high efficiency in case of input frequency variation. To validate the adaptive amplifier operation, which is a 450MHz operating frequency and a 100MHz bandwidth, the class E amplifier is implemented. As a result, the adaptive amplifier is maintained above 60% efficiency in frequency range and has a 74.8% maximum efficiency.

A Multistage In-flight Alignment with No Initial Attitude References for Strapdown Inertial Navigation Systems

  • Hong, WoonSeon;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.565-573
    • /
    • 2017
  • This paper presents a multistage in-flight alignment (MIFA) method for a strapdown inertial navigation system (SDINS) suitable for moving vehicles with no initial attitude references. A SDINS mounted on a moving vehicle frequently loses attitude information for many reasons, and it makes solving navigation equations impossible because the true motion is coupled with an undefined vehicle attitude. To determine the attitude in such a situation, MIFA consists of three stages: a coarse horizontal attitude, coarse heading, and fine attitude with adaptive Kalman navigation filter (AKNF) in order. In the coarse horizontal alignment, the pitch and roll are coarsely estimated from the second order damping loop with an input of acceleration differences between the SDINS and GPS. To enhance estimation accuracy, the acceleration is smoothed by a scalar filter to reflect the true dynamics of a vehicle, and the effects of the scalar filter gains are analyzed. Then the coarse heading is determined from the GPS tracking angle and yaw increment of the SDINS. The attitude from these two stages is fed back to the initial values of the AKNF. To reduce the estimated bias errors of inertial sensors, special emphasis is given to the timing synchronization effects for the measurement of AKNF. With various real flight tests using an UH60 helicopter, it is proved that MIFA provides a dramatic position error improvement compared to the conventional gyro compass alignment.

User Model Expansion for Adaptive Learning in Ubiquitous Environment (유비쿼터스 환경에서 적응적 학습을 위한 사용자 모델 확장)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.278-283
    • /
    • 2010
  • In this paper, we designed and proposed framework of extended user model to support student tailored learning in ubiquitous environment. For the purpose, existents model that is domain model, user model, adaptation model and interaction model connected to LMS(Learning Management System) and LCMS(Learning Contents Management System). Students information management process that is extended user model is in between LMS and adaptive learning system. And the process connected u-LMS to use u-learning. u-LMS and u-LCMS could support the learning contents through exchange the contents according to connect and request from the students.

Adaptive Filter Design for Radar Aided SDINS (레이다 보정형 스트랩다운 관성항법시스템을 위한 적응필터 구성)

  • 유명종;박찬주;김현백
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.420-424
    • /
    • 2003
  • A new adaptive filter is proposed for an aided strapdown inertial navigation system(SDINS). The proposed filter can be used to effectively estimate the time-varying variance of the measurement noise. Then, the in-flight alignment for the radar aided SDINS is designed using the additive quatermion error model. Simulation results show that the proposed adaptive filter effectively improves the performance of the radar aided SDINS.

A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment (전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구)

  • Kim, Cheon-Joong;Lee, In-Seop;Oh, Ju-Hyun;Yu, Hae-Sung;Park, Heung-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.108-121
    • /
    • 2019
  • This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.

Performance Analysis of Pulse Positioning Using Adaptive Threshold Detector (ATD)

  • Chang, Jae Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This paper describes the measurement of pulse positioning (input time) to calculate a time of arrival (TOA) that takes from transmitting a signal from the target of multilateration (MLAT) system to receiving the signal at the receiver. In this regard, this paper analyzes performances of simple threshold method and level adjust system (LAS) method, which is one of the adaptive threshold detector (ATD) methods, among many methods to calculate pulse positioning of signal received at the receiver. To this end, Cramer-rao lower bound (CRLB) with regard to pulse positioning, which was measured when signals transmitted from a transponder mounted at the target were received at the receiver, was induced and then deviation sizes with regard to pulse positioning, which was measured with simple threshold and LAS methods through MATLAB simulations, were compared. Next, problems occurring according to a difference in amplitude of signals inputted to each receiver are described when pulse positioning is measured at multiple receivers located at a different distance from the target as is the case in the MLAT system. Furthermore, LAS method to resolve the problems is explained. Lastly, this study analyzes whether a pulse positioning error occurring due to the signal noise satisfies the requirement (6 nsec. or lower) recommended for the MLAT system when using these two methods.

Noise Cancellation and Detection of Heartbeat using A New Adaptive Noise Canceller Based on ALE(Adaptive Line Enhancer) in the CW Bio-radar (CW 바이오 레이더에서 ALE(Adaptive Line Enhancer) 기반의 새로운 적응형 잡음제거기를 이용한 잡음제거 및 심장박동 검출)

  • Seo, Myung-Hwan;Kim, Jae-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.482-489
    • /
    • 2009
  • This paper proposes a CW(Continuous-Wave) bio-radar applying a new adaptive noise canceller based on ALE(Adaptive Line Enhancer) which can remove the Gaussian noise and system noise. Recently the research works on this CW bio-radar which can be used to detect heartbeat and respiration are advanced by the university and research facility. Although the researches describe CW bio-radar not only is vulnerable for the Gaussian noise but also has a disadvantage of decreasing the heart-rate accuracy due to the noise, the researches do not demonstrate the effective method for removing the noise component in a baseband signal. In this paper, a CW bio-radar applying the new adaptive noise canceller based on ALE which can remove the noise component is proposed. This paper compares and analyzes the performance for increasing the heart-rate accuracy according to removing the Gaussian noise and system noise in the baseband signal through the quadrature receiver which can alleviate the demodulation sensitivity to target position.

  • PDF

Neural Networks Based Modeling with Adaptive Selection of Hidden Layer's Node for Path Loss Model

  • Kang, Chang Ho;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.193-200
    • /
    • 2019
  • The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.

A Study on the Power Allocation for AMC Scheme in OFDMA System (OFDMA 시스템에서 AMC를 위한 전력할당 방식에 관한 연구)

  • Kim, Dong-Cheol;Shin, Hyun-Joon;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.192-199
    • /
    • 2005
  • Adaptive Modulation & Coding (AMC) is the method of varying the modulation and coding scheme for the changeable wireless channel environment. WiBro use AMC method because it has a very large variation caused by mobility interference and other cell interference. In this paper, we will compare and analysis the method of selecting the optimum MCS level for the efficiently use of mobile power consumption.

  • PDF