• Title/Summary/Keyword: Adaptive MIMO

Search Result 158, Processing Time 0.021 seconds

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

Perfonnance Analysis of the Combined AMC-MIMO Systems with MCS Level Selection Method (MCS 레벨 선택 방식에 따른 AMC-MIMO 결합 시스템의 성능 비교)

  • Hwang In-Tae;Kang Min-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.665-671
    • /
    • 2006
  • In this paper, we propose and observe a system that adopts Independent-MCS (Modulation and Coding Scheme) level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement. As a result of simulation, Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7dB{\sim}9dB$ SNR (Signal-to-Noise Ratio) range.

Development of Multi-Input Multi-Output Control Algorithm for Adaptive Smart Shared TMD (적응형 스마트 공유 TMD의 MIMO 제어알고리즘개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • A shared tuned mass damper (STMD) was proposed in previous research for reduction of dynamic responses of the adjacent buildings subjected to earthquake loads. A single STMD can provide similar control performance in comparison with two traditional TMDs. In previous research, a passive damper was used to connect the STMD with adjacent buildings. In this study, a smart magnetorheological (MR) damper was used instead of a passive damper to compose an adaptive smart STMD (ASTMD). Control performance of the ASTMD was investigated by numerical analyses. For this purpose, two 8-story buildings were used as example structures. Multi-input multi-output (MIMO) fuzzy logic controller (FLC) was used to control the command voltages sent to two MR dampers. The MIMO FLC was optimized by a multi-objective genetic algorithm. Numerical analyses showed that the ASTMD can effectively control dynamic responses of adjacent buildings subjected to earthquake excitations in comparison with a passive STMD.

Performance Evaluation of Mobile Across Layer in Next Generation Network (차세대 네트워크에서 모바일 액세스 계층의 성능 평가)

  • Roh Jae-Sung;Moon Il-Young
    • Journal of Digital Contents Society
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • In this paper, performance evaluation of mobile access layer for multiple-input multiple-output (MIMO) MultiCarrier(MC)/CDMA 16 QAM system is considered to mitigate multiple access interference and enhance system channel capacity in Rayleigh wireless fading channel. Traditionally, multi-path is viewed as an undesirable feature of wireless communications. Therefore, diversity and adaptive array schemes are proposed to mitigate its effects. Recently, to increase the spectrum efficiency and the link reliability, MIMO schemes is devised to exploit multi-path in a scattering wireless channel. In particular, the channel capacity of MIMO-MC/CDMA 16 QAM system is evaluated according to Eb/No, Mc, p. From the results, in order to improve the channel capacity, the signals at various elements must be uncorrelated. And if the paths are correlated due to inappropriate spacing or mutual coupling effects, the channel capacity of MIMO-MC/CDMA 16 QAM system becomes substantially smaller.

  • PDF

Channel Estimation Based on LMS Algorithm for MIMO-OFDM System (MIMO-OFDM을 위한 LMS 알고리즘 기반의 채널추정)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1455-1461
    • /
    • 2012
  • MIMO-OFDM which is one of core techniques for the high-speed mobile communication system requires the efficient channel estimation method with low estimation error and computational complexity, for accurately receiving data. In this paper, we propose a channel estimation algorithm with low channel estimation error comparing with LS which is primarily employed to the MIMO-OFDM system, and with low computational complexity comparing with MMSE. The proposed algorithm estimates channel vectors based on the LMS adaptive algorithm in the time domain, and the estimated channel vector is sent to the detector after FFT. We also suggest a preamble architecture for the proposed MIMO-OFDM channel estimation algorithm. The computer simulation example is provided to illustrate the performance of the proposed algorithm.

Throughput Improvement of Adaptive Modulation System with an Efficient Turbo-Coded V-BLAST Technique in each MIMO Channel

  • Ryoo, Sang-Jin;Kim, Seo-Gyun;Na, Cheol-Hun;Hong, Jin-Woo;Hwang, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.905-908
    • /
    • 2008
  • In this paper, an Adaptive Modulation (AM) system with an efficient turbo-coded Vertical-Bell-lab Layered Space-Time (V-BLAST) technique is proposed. The proposed decoding algorithm adopts iteratively the extrinsic information from a Maximum a Posteriori (MAP) decoder as a priori probability in the two decoding procedures of the V-BLAST scheme of ordering and slicing. In this analysis, each MIMO channel is assumed to be a part of the system of performance improvement.

  • PDF

MIMO Robust Adaptive Fuzzy Controller

  • Zhang, Huaguang;Bien, Zeungnam;Yinguo, Piao
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.341-345
    • /
    • 1997
  • A novel fuzzy basis function vector-based adaptive control approach for Multi-input and Multi-output(MIMO) system is presented in this paper, in which the nonlinear plants is first linearised, the fuzzy basis function vector is then introduced to adaptively learn the upper bound of the system uncertainty vector, and its output is used as the parameters of the compensator in the sense that both the asymptotic error convergence can be obtained for the colsed loop nonlinear control system.

  • PDF

Quasi-Orthogonal STBC based on Partial Feedback with Adaptive Power Allocation under Imperfect Channel Estimation (채널 추정 에러와 동적 파워 할당 기술이 적용된 MIMO 시스템)

  • Huh, Chang-Yeul;Lee, Dong-Hun;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.83-84
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) systems can achieve the increasing of performances by using an adaptive power allocation. The related previous work limited the transmit antenna number because orthogonal space-time block codes (OSTBCs) yield full transmit rate only for two transmit antennas. We extend a robust system under imperfect channel estimation for four transmission antennas with maintaining a full transmission rate.

  • PDF

Digital Predistortion Technique for MIMO Transmitters (MIMO 송신기에서 결합한 되먹임 신호에 기반한 디지털 전치왜곡 기법)

  • Jeong, Eui-Rim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1289-1295
    • /
    • 2012
  • An adaptive digital predistortion (PD) technique is proposed for linearization of power amplifiers (PAs) in multiple-input multiple-output (MIMO) transmitters. We consider a PD structure equipped with only one combined feedback path while conventional systems have multiple feedback paths. Hence, the proposed structure is much simpler than that of multiple feedback paths. Based on the structure, a new PD algorithm is derived. The simulation results show that linearization performance of the proposed method is almost the same as the conventional multiple feedback technique while the former is much simpler to implement than the latter.

A Simple AMC Technique using ARQ for a MIMO-OFDM System based on IEEE 802.11a WLANs (IEEE 802.11a WLAN 기반 MIMO-OFDM 시스템에서 ARQ를 이용한 간단한 적응변조 기법)

  • 유승연;김경연;이충용;홍대식;박현철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.1-8
    • /
    • 2004
  • A simple AMC (Adaptive Modulation and Coding) technique using ARQ (Automatic Repeat Request) for a MIMO (Multiple Input Multiple Output) system is proposed which does not require the additional feedback. In addition, the proposed AMC technique is different from the conventional technique in the aspect of considering the MCS (Modulation and Coding Scheme) level from the previous packet. The proposed technique can discard fewer amounts of unsuitable packets than the conventional technique. In the proposed system not only same rate control method for transmit antennas but also individual rate control method can be applied. The performance of the proposed technique is verified under a MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system based on WLAN (Wireless Local Area Network), IEEE 802.11a. The results of the computer simulation show that a MIMO system with the proposed technique achieves higher throughput than one with a fixed transmission rate.