• Title/Summary/Keyword: Adaptive Fuzzy

Search Result 1,119, Processing Time 0.034 seconds

Adaptive Fuzzy Control of Helicopter (헬리콥터의 적응 퍼지제어)

  • 김종화;장용줄;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.144-147
    • /
    • 2001
  • This paper presents adaptive fuzzy controller which is uncertainty or unknown variation in different parameters with nonlinear system of helicopter. The proposed adaptive fuzzy controller applied TSK(Takagi-Sugeno-Kang) fuzzy system which is not only low number of fuzzy rule, and a linear input-output equation with a constant term, but also can represent a large class of nonlinear system with good accuracy. The adaptive law was designed by using Lyapunov stability theory. The adaptive fuzzy controller is a model reference adaptive controller which can adjust the parameter $\theta$ so that the plant output tracks the reference model output. First of all, system of helicopter was considered as stopping state, and design of controller was simulated from dynamics equation with stopping state. Results show that it is controlled more successfully with a model reference adaptive controller than with a non-adaptive fuzzy controller when there is a modelling error between system and model or a continuous added noise in such unstable system.

  • PDF

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

Robust adaptive fuzzy controller for an inverted pendulum

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1267-1271
    • /
    • 2003
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed loop system is guaranteed. The computer simulation results for an inverted pendulum system show the performance of the proposed robust adaptive fuzzy controller.

  • PDF

Robust Indirect Adaptive Fuzzy Controller for Balancing and Position Control of Inverted Pendulum System

  • Kim Yong-Tae;Kim Dong-Yon;Yoo Jae-Ha
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.155-160
    • /
    • 2006
  • In the paper a robust indirect adaptive fuzzy controller is proposed for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the proposed fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing and a supervisory fuzzy controller which emulates heuristic control strategy and arbitrate two control objectives. It is proved that the signals in the overall system are bounded. Simulation results are given to verify the proposed adaptive fuzzy control method.

An Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators

  • Seo, Sam-Jun;Park, Gwi-Tae;Kim, Dongsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.1-162
    • /
    • 2001
  • In this paper, the adaptive fuzzy system is used as an adaptive approximator for robot nonlinear dynamic. A theoretical justification for the adaptive approximator is proving that if the representive point(RP or switching function) and its derivative in sliding mode control are used as the inputs of the adaptive fuzzy system, the adaptive fuzzy system can approximate robot nonlinear dynamics in the neighborhood of the switching surface. Thus the fuzzy controller design is greatly simplified and at the same time, the fuzzy control rule can be obtained easily by the reaching condition. Based on this, a new method for designing an adaptive fuzzy control system based on sliding mode is proposed for the trajectory tracking control of a robot with unknown nonlinear dynamics.

  • PDF

Control of AC Servo Motor Using Adaptive Fuzzy High Gain Observer (적응 퍼지 고이득 관측기를 이용한 교류 서보 전동기 제어)

  • Kim, Sang-Hoon;Yun, Kwang-Ho;Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.53-55
    • /
    • 2004
  • This paper deals with speed control of AC servo motor using a Adaptive fuzzy high gain observer. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive fuzzy high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive fuzzy high gain observer in the speed control of AC servo motor.

  • PDF

A Design for Elevator Group Controller of Building using Adaptive Dual Fuzzy Algorithm (Adaptive Dual Fuzzy 알고리즘을 이용한 빌딩의 엘리베이터 군 제어기 설계)

  • 최승민;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.578-581
    • /
    • 2001
  • In this paper, the development of a new group controller for high-speed elevator is carried out utilizing approach of an adaptive dual fuzzy logic. A goals of control are the minimization of waiting time, mean-waiting time and long-waiting time in a building. when a new hall call is generated, adaptive dual fuzzy controller evaluate traffic pattern and change appropriately the membership function of fuzzy rule base. Control for co-operation among elevators in group control algorithm are essential, and the most critical control function in group controller is a effective and proper hall call assignment of elevators. Thy group elevator system utilizing adaptive dual fuzzy control reveals a great deal of improvement on its performance.

  • PDF

A Simulation of Elevator Group Controller using Adaptive Dual Fuzzy Algorithm (Adaptive Dual Fuzzy 알고리즘을 이용한 엘리베이터 군 제어 시뮬레이션)

  • 최승민;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • In this paper, the development of a new group controller for high-speed elevator is carried out utilizing approach of an adaptive dual fuzzy logic. A goals of control are the minimization of waiting time, mean-waiting time and long-waiting time in a high building, when a new hall call is generated, adaptive dual fuzzy controller evaluate traffic pattern and change appropriately the membership function of fuzzy rule, base. Control for co-operation among elevators in group control algorithm are essential , and the most critical control function in group controller is a effective and proper hall call assignment of elevators. The group elevator system utilizing adaptive dual fuzzy control reveals a great deal of improvement on its performance.

  • PDF

T-S Fuzzy Model Based Indirect Adaptive Fuzzy Observer Design

  • Hyun Chang-Ho;Kim You-Keun;Kim Euntai;Park Mignon
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.348-353
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems arc represented by fuzzy models since fuzzy logic systems arc universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF