• Title/Summary/Keyword: Adaptive Forgetting Factor

Search Result 24, Processing Time 0.025 seconds

Time Variant Parameter Estimation using RLS Algorithm with Adaptive Forgetting Factor Based on Newton-Raphson Method (Newton-Raphson법 기반의 적응 망각율을 갖는 RLS 알고리즘에 의한 원격센서시스템의 시변파라메타 추정)

  • Kim, Kyung-Yup;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.435-439
    • /
    • 2007
  • This paper deals with RLS algorithm using Newton-Raphson method based adaptive forgetting factor for a passive telemetry RF sensor system in order to estimate the time variant parameter to be included in RF sensor model. For this estimation with RLS algorithm, phasor typed RF sensor system modelled with inductive coupling principle is used. Instead of applying constant forgetting factor to estimate time variant parameter, the adaptive forgetting factor based on Newton-Raphson method is applied to RLS algorithm without constant forgetting factor to be determined intuitively. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper.

  • PDF

Adaptive Moving Jammer Cancellation Algorithm with the Robustness to the Array Aperture

  • Song, Joon-il;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.40-43
    • /
    • 2004
  • In moving jammer environments, the performance of conventional adaptive beamformer is severely degraded and the robust adaptive beamformer requires additional sensors to obtain desired performances. Therefore, it is necessary to develop efficient algorithm without any additional requirement of the number of sensors, etc. In this paper, we introduce a fast adaptive algorithm with variable forgetting factor, which does not have any additional requirements. From the computer simulations, we obtain the better performances than those of other techniques for the arrays with various aperture lengths.

Low-Complexity VFF-RLS Algorithm Using Normalization Technique (정규화 기법을 이용한 낮은 연산량의 가변 망각 인자 RLS 기법)

  • Lee, Seok-Jin;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • The RLS (Recursive Least Squares) method is a broadly used adaptive algorithm for signal processing in electronic engineering. The RLS algorithm shows a good performance and a fast adaptation within a stationary environment, but it shows a Poor performance within a non-stationary environment because the method has a fixed forgetting factor. In order to enhance 'tracking' performances, BLS methods with an adaptive forgetting factor had been developed. This method shows a good tracking performance, however, it suffers from heavy computational loads. Therefore, we propose a modified AFF-RLS which has relatively low complexity m this paper.

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.

Performance Enhancement for Speaker Verification Using Incremental Robust Adaptation in GMM (가무시안 혼합모델에서 점진적 강인적응을 통한 화자확인 성능개선)

  • Kim, Eun-Young;Seo, Chang-Woo;Lim, Yong-Hwan;Jeon, Seong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.268-272
    • /
    • 2009
  • In this paper, we propose a Gaussian Mixture Model (GMM) based incremental robust adaptation with a forgetting factor for the speaker verification. Speaker recognition system uses a speaker model adaptation method with small amounts of data in order to obtain a good performance. However, a conventional adaptation method has vulnerable to the outlier from the irregular utterance variations and the presence noise, which results in inaccurate speaker model. As time goes by, a rate in which new data are adapted to a model is reduced. The proposed algorithm uses an incremental robust adaptation in order to reduce effect of outlier and use forgetting factor in order to maintain adaptive rate of new data on GMM based speaker model. The incremental robust adaptation uses a method which registers small amount of data in a speaker recognition model and adapts a model to new data to be tested. Experimental results from the data set gathered over seven months show that the proposed algorithm is robust against outliers and maintains adaptive rate of new data.

Time Variant Parameter Estimation using RLS Algorithm with Adaptive Forgetting Factor Based on Newton-Raphson Method (Newton-Raphson법 기반의 적응 망각율을 갖는 RLS 알고리즘에 의한 원격센서시스템의 시변파라메타 추정)

  • Kim, Kyung-Yup;Ji, Seok-Joon;Kwak, Lee-Hui;Lee, John-T.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1680-1681
    • /
    • 2007
  • This paper deals with RLS algorithm using Newton-Raphson method based adaptive forgetting factor for a passive telemetry RF sensor system in order to estimate the time variant parameter to be included in RF sensor model.

  • PDF

Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm (적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Ja Ho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

Robust adaptive control of linear time-varying systems which are not necessarily slowly varying

  • Song, Chan-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1424-1429
    • /
    • 1990
  • This paper presents an indirect adaptive control scheme for discrete linear systems whose parameters are not necessrily slowly varying. It is assumed that system parameters are modelled as linear combinations of known bounded functions with unknown constant coefficients. Unknown coefficients are estimated using a recursive least squares algorithm with a dead zone and a forgetting factor. A control law which makes the estimated model exponentially stable is constructed. With this control law and a state observer, all based on the parameter estimates, it is shown that the resulting closed-loop system is globally stable and robust to bounded external disturbances and small unmodelled plant uncertainties.

  • PDF

Adaptive On-line Optimization of Cellular Productivity of Continuous Methylotroph Culture (메타놀자화균의 연속배양에 의한 균체생산의 온-라인 적응최적화)

  • 이형춘;박정오
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1988
  • An adaptive on-line optimization method has been applied to test the ability to maximize the cellular productivity of a continuous methylotroph culture system which was simulated by a variable yield Monod-type model. Optimum dilution rate and productivity were successively obtained and maintained at all times by the algorithm that utilizes steepest descent technique as optimization method and recursive least-square method with forgetting factor as dynamic model identification.

  • PDF