• Title/Summary/Keyword: Adaptation Law

Search Result 137, Processing Time 0.031 seconds

Design of a Continuous Adaptive Robust Control Estimating the Upper Bound of the Uncertainties using Fredholm Integral Formulae (Fredholm 적분식을 이용하여 불확실성의 경계치를 추정하는 적응강인제어기 설계)

  • 유동상
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.207-211
    • /
    • 2004
  • We consider a class of uncertain nonlinear systems containing the uncertainties without a priori information except that they are bounded. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound. Using this adaptive upper bound, a continuous robust control which renders uncertain nonlinear systems uniformly ultimately bounded is designed.

Model Reference Adaptive Control for Linear System with Improved Convergence Rate-parameter Adaptation Method (선형시스템을 위한 개선된 수렴속도를 갖는 기준모델 적응제어)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.884-893
    • /
    • 1988
  • Adaptive controllers for linear unknown coefficient system, that is corrupted by disturbance, are designed by parameter adaptation model reference adaptive control(MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the convergence rate of the design, an indirect-suboptimal control law is derived. Proper compensation for the effects of time-varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

Fast Gain Scheduling Using Fuzzy Disturbance Estimator

  • Lee, Seon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.5-48
    • /
    • 2001
  • The resulting stabilizing controller in this paper consists of the disturbance estimator and the gain scheduled controller. The disturbance estimator tracks the unknown external disturbance and its derivative information in the closed-loop control system using fuzzy logic based adaptation law. Moreover, the gains of the stabilizing controller are appropriately scheduled according to the estimated values. Furthermore, since the estimation law is combined with the stabilizing controller in the closed control loop, it asymptotically minimizes the estimation error. In order to conrm the usefulness of the proposed control scheme, it is applied to the magnetic suspension systems.

  • PDF

Robust Adaptive Control for Robot Manipulator (로보트 매니퓰레이터의 강인한 적응제어)

  • Yi, Taek-Chong;Ko, Myoung-Sam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.34-43
    • /
    • 1990
  • An improved parameter adaptation and control law for robot manipulator are proposed based on a linearized parametric system equation and augmented error vectors. In view of the modeling error and parasitics with small time constants which inevitably introduced during modelling process, their effects on the robustness of the system performance are reviewed and as an conutermearsure, adaptation mechanism with low pass filter is proposed. Proposed parameter adaptation and control low assure the stability of the robot manipulator in the large without further assumption. Computer simulation shows its effectiveness of the proposed adaptation mechanism to improve the robustness of the system in presence of the parasitics in the system and superior performance for high speed operations make it an attractive option in application of the adaptive control field for robot manipulator.

  • PDF

Model Reference Adaptive Control for Multivariable Systems (다변수 시스템에 대한 기준 모델형 적응 제어)

  • Hai-Won Yang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.11
    • /
    • pp.394-403
    • /
    • 1983
  • This paper discusses a model reference adaptive control for a multi-input multi-output continuos system in matrix fraction description. The controller is of Monopoli-Narendra type with a time-varying gain matrix in the parameter adaptation law. The transfer matrix of the given plant with an adjustable controller is made to approach to that of the reference model asymptotically. It is shown that, under some plausible assumptions such as on the knowlidge of an interactor matrix, the algorithm for a single-input single-output system can be appropriately extended to a multi-input multi-output system. The convergence of an adaptation law is estavlished with some stability theory and stability of the overall system is asserted by an analytical investigation.

  • PDF

Model-Reference Adaptive Pitch Attitude Control of Fixed-Wing UAV (고정익 무인 항공기 피치 자세의 모델-참조 적응 제어)

  • Kim, Byung-Wook;Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.499-507
    • /
    • 2019
  • Despite the well-known mathematical model of fixed-wing aircraft, there are various studies to meet desired performances by considering the modeling errors in the extended flight envelope. This paper proposes a new adaptation mechanism of model-reference adaptive control, which applies the Levenberg-Marquardt algorithm to the pitch attitude control of fixed-wing UAV. In addition, reference model in the adaptation law is set by referring to the dynamic properties of the plant model. The performance of the proposed adaptive control law is verified through simulations and flight tests.

Adaptive Nonlinear Guidance Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 비선형 적응 유도기법)

  • 좌동경;최진영;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 2003
  • This paper proposes a new nonlinear adaptive guidance law. Fourth order state equation for integrated guidance and control loop is formulated considering target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. An adaptive nonlinear guidance law is proposed to compensate for the uncertainties In both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation fer unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem of target maneuver and the limited performance of control loop. We provide the stability analyses and demonstrate the effectiveness of our scheme through simulations.

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

Studies on definition of forest-Law (산림(山林)의 정의(定義)에 대(對)한 연구(硏究))

  • Chi, Young Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1968
  • Chapter 1 in Article 2 of forest law defines the definition of forest. but its meaning is so wide that it itself containg a lot of contradiction in it. And it lose legal adaptation which gives a lot of hindrance with criminal investigation. Furthermore, it has made extension of ferming lands, and promotion of livestocks which are most important matter to be solved in Korea retarded. Such an act made us bewildered to adapt concerned laws being applied to out law. This is to form a basic principal and define its correction. It is required that forestry of Korea should be utilized valuable and reserve forest region instead of definition totally, and the purpose of reforestation should be clear. In addition to above, it is required to define what forestry is, in the direction of reconstructing forestry better in Korea.

  • PDF

Robust Adaptive Control of A HexaSlide Type Parallel Manipulator

  • Kim, Jong-Phil;Kim, Sung-Gaun;Ryu, Jeha
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.262-267
    • /
    • 2001
  • Jeha Ryu Department of Mechatronics, Kwangju Institute of Science and Technology This paper presents an application of a robust adaptive control strategy to HexaSlide type six degrees-of-freedom parallel manipulators. The HexaSlide type parallel manipulators are characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. The proposed control law is developed based on a simplified second order system dynamic equation in joint space with uncertain mass, damper, spring, and Coulomb friction terms. These uncertain parameters are updated by an adaptation law that is derived by Lyapunov stability theorem. A robust adaptive control law by using the boundary layer is designed for the purpose of compensating for the neglected dynamic effects of the mobile platform and the six moving links that are modeled as a disturbance term. Experimental results show good and fast tracking performance.

  • PDF