• Title/Summary/Keyword: Acyl CoA dehydrogenase

Search Result 43, Processing Time 0.027 seconds

N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1

  • Jin, Wensong;Lin, Hui;Gao, Huifang;Guo, Zewang;Li, Jiahuan;Xu, Quanming;Sun, Shujing;Hu, Kaihui;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.596-606
    • /
    • 2019
  • N-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ${\Delta}swrI$ with or without supplementing exogenous N-hexanoyl-L-homoserine lactone ($C_6-HSL$) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing $C_6-HSL$. Furthermore, fermentation product analysis indicated that ${\Delta}swrI$ could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ${\Delta}swrI$ appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, ${\alpha}$-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.

A Cytosolic Thioredoxin Acts as a Molecular Chaperone for Peroxisome Matrix Proteins as Well as Antioxidant in Peroxisome

  • Du, Hui;Kim, Sunghan;Hur, Yoon-Sun;Lee, Myung-Sok;Lee, Suk-Ha;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.

Organic acidemias in Korea (한국의 유기산혈증)

  • Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.11 no.1
    • /
    • pp.52-73
    • /
    • 2011
  • Since we have started organic acid analysis on Jul. 1997, we have been collecting data about organic acidemias in Korea. The data presented here is our 3 years experience in organic acid analysis. We have collected 712 samples from major university hospitals all over the Korea, large enough for relatively accurate incidence of organic acid disorders. We are using solvent extraction method with ethylacetate, MSTFA for derivatization and quantitation of 83 organic acids simultaneously. Out of 712 patients sample, 498 patients sample (70%) showed no evidence of organic acid abnormalities. Out of 214 remaining samples we have found very diverse disorders such as methylmalonic aciduria(6), propionic aciduria (10), biotinidase deficiency (6), maple syrup urine disease (3), isovaleric aciduria (4), tyrosinemia type II (4), tyrosinemia type IV (1), glutaric aciduria type I (1), glutaric aciduria type II (22), 3-methylglutaconic aciduria type I (3), 3-methylglutaconic aciduria type III (7), HMG-CoA lyase deficiency (1), hyperglyceroluria (2), cytosolic 3-ketothiolase deficiency (55), mitochondrial 3-ketothiolase deficiency (3), 3-hydroxyisobutyric aciduria (2), L-2-hydroxyglutaric aciduria (2), fumaric aciduria (2), lactic aciduria with combined elevation of pyruvate (most likely PDHC deficiency) (28), lactic aciduria without combined elevation of pyruvate (most likely mitochondrial respiratory chain disorders) (35), SCAD deficiency (3), MCAD deficiency (1), 3-methylcrotonylglycineuria (1), orotic aciduria (most likely urea cycle disorders) (7) and 2-methylbranched chain acyl-CoA dehydrogenase deficiency (1). In conclusion, though the incidence of indivisual organic acidemia is low, the incidence of overall organic acidemia is relatively high in Korea. Most of the patients showed some signs of neurological dysfunction. In other words, organic acid analysis should be included in the diagnostic work up of all neurological dysfunctions.

  • PDF

Identification of single nucleotide polymorphisms in the ACADS gene and their relationships with economic traits in Hanwoo (한우의 ACADS 유전자내의 SNP 탐색 및 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Cheong, Il-Cheong;Sohn, Young-Gon;Kong, Hong-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • The acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS) gene is known to be related with fat metabolism, especially coverts the fat to the energy sources in cattle. In human, the mutations in this gene cause SCAD deficiency, which is one of the fatty acid metabolism disorders. The ACADS gene is located on bovine chromosome 17. The objective of this study was to identify SNPs in Hanwoo ACADS gene and identify the relationships with economic traits. In this study, two SNPs, T1570G SNP in exon 2 and G13917A SNP in exon 4, were observed. Moreover, in the coding region, 2 missense mutations, T (Cys) ${\rightarrow}$ G (Trp) mutation at 1570 bp and G (Arg) ${\rightarrow}$ A (Gln) mutation at 13917 bp, were observed. These mutations were subjected to the PCR-RFLP for typing 198 Hanwoo animals. The observed genotype frequency for T1570G was 0.135 (TT), 0.860 (TG) and 0.005 (GG), respectively. Also, 0.900 (GG) and 0.100 (GA) were observed for the G13917A mutation. The association of these SNPs with four economic traits, CW (Carcass Weight), BF (Backfat Thickness), LMA (Longissimus Muscle Area), MS (Marbling Score), were also observed. The results indicated that no significant results were observed in all four traits (P>0.05). This might indicate that further studies are ultimately needed to use the SNPs in ACADS gene in lager populations for effectively used for the marker assisted selection.

Regulation of PPAR and SREBP-1C Through Exercise in White Adipose Tissue of Female C57BL/6J Mice

  • Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.227-236
    • /
    • 2012
  • Previous study showed that swimming improved obesity but was not through $PPAR{\alpha}$ activation in liver and skeletal muscle in high fat diet-fed female mice with functioning ovaries as an animal model of obese premenopausal women. Thus, this study was aimed at investigation of the effects of swimming on the promotion of health and its molecular mechanism in adipose tissue of high fat diet-fed female mice. Eight-week-old female C57BL/6J mice were randomly divided into two groups (a non-swim control group and a swim group, n=8/group). Mice in the swim group swam for 2 h daily for 6 weeks in water bath with temperature of $35{\pm}1^{\circ}C$. All the animals received high fat diet (45% kcal fat) for 6 weeks. Reverse transcription-polymerase chain reaction was used to elucidate the molecular mechanism. Female mice subjected to swimming had significantly decreased body weight gain and white adipose tissue mass compared with the female control mice. Histological studies illustrated that swimming decreases the hepatic lipid accumulation. As expected, swimming did not affect the expression of mRNA levels of peroxisome proliferator-activated receptor (PPAR) ${\alpha}$ and $PPAR{\alpha}$ target genes responsible for mitochondrial fatty acid ${\beta}$-oxidation, such as carnitine palmitoyltransgerase-1 and medium chain acyl-CoA dehydrogenase in the white adipose tissue. However, mice that underwent 6-weeks of swimming exercise had decreased the mRNA expression of lipogenic genes, such as sterol regulatory element-binding proteins-1C and fatty acid synthase in comparison to sedentary control mice, with decreased $PPAR{\gamma}$ target genes involved in adipocyte-specific marker genes, such as adipocyte fatty acid binding protein and leptin in the white adipose tissue. These results suggest that swimming can effectively prevent obesity induced by high fat diet-fed, in part through down-regulation of adipogenesis and lipogenesis in white adipose tissue of female obese mice. Moreover, these results suggest that swimming maybe contributing the promotion of health through regulation of adipogenesis and lipogenesis in overweight premenopausal women.

Decreased Complete Oxidation Capacity of Fatty Acid in the Liver of Ketotic Cowsa

  • Xu, Chuang;Liu, Guo-wen;Li, Xiao-bing;Xia, Cheng;Zhang, Hong-you;Wang, Zhe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.312-317
    • /
    • 2010
  • Complete oxidation of fatty acid in the liver of ketotic cows was investigated. Serum non-esterified fatty acid (NEFA), beta-hydroxybutyric acid (BHBA) and glucose concentrations were measured using biochemical techniques. Carnitine palmitoyl transferase II (CPT II), 3-hydroxy acyl-CoA dehydrogenase (HAD) and oxaloacetic acid (OAA) concentrations in the liver were detected by ELISA. Serum glucose was lower in ketotic cows than controls (p<0.05). Serum BHBA and NEFA concentrations were higher in ketotic cows than controls (p<0.05). OAA, CPT II, and HAD contents in the liver of ketotic cows were lower than in controls (p<0.05). There were negative correlations between serum NEFA concentration and OAA, CPT II and HAD, but no correlation between serum BHBA concentration and capacity for complete oxidation of fatty acid. Overall, the capacity for complete fatty acid oxidation in the liver of ketotic cows might have been decreased. High serum NEFA concentrations may be unfavorable factors for the pathway of complete oxidation of fatty acid in the liver.

8 Years Report of Urine Organic Acid Analysis - Comparison before and after Introduction of Neonatal Screening Test using Tandem Mass Spectrometry - (소변 유기산 분석 8년의 정리 -탠덤매스(Tandem mass spectrometry)를 이용한 신생아 선별검사 도입 전후의 비교-)

  • Ahn, Seok Min;Shin, Woo Chul;Jeong, Han Bin;Seo, Young Jun;Jeong, Hwal Rim;Yoon, Jong Hyung;Bae, Eun Ju;Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Purpose: Disorders of organic acid metabolism have various clinical manifestations and it may be life-threatening. The prognoses of affected children are dependent on early diagnosis and treatment. We report this study to find out detection rate of referred samples, clinical manifestations and age distribution after introduction of neonatal screening test using tandem mass spectrometry in Hallym University Chuncheon Sacred Heart Hospital during 8 years and 9 months. Methods: The 2,794 patients referred from Jan. 2007 to Sep. 2015 were divided into four groups according to age. We conducted organic acid analysis of urine samples of patients and analyzed clinical manifestations and distributions of age at the diagnosis. For patients with ambiguous results, reanalysis of urine organic acid after diet restriction, protein loading and restriction, has been done. Results: A total of 626 patients with 20 disorders were diagnosed. Mitochondrial disorders (482 patients) were the most common diagnosis, followed by ketolytic defects (67), 3-hydroxyisobutyric aciduria (32), EPEMA syndrome (8), 3-methylcrotonyl glycinuria (7), glutaric aciduria type II (6) and type I (4), methylmalonic aciduria (3), isovaleric aciduria (3) and medium chain acyl-CoA dehydrogenase deficiency (3). Conclusion: As neonatal screening test using tandem mass spectrometry is increasingly common and medical environment is changed, detection rate of disorders of organic acid metabolism in this study has decreased compared to previous report. Because the deterioration can be prevented by early diagnosis and treatment, many pediatricians have to pay special attention to possibility of the disorders and make an effort for early diagnosis in clinical setting.

  • PDF

Comparison of overfed Xupu and Landes geese in performance, fatty acid composition, enzymes and gene expression related to lipid metabolism

  • Liu, Xu;Li, Peng;He, Changqing;Qu, Xiangyong;Guo, Songchang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1957-1964
    • /
    • 2020
  • Objective: The aim of this study was to compare overfeeding performance, fatty acid composition, blood chemistry, enzymes and genes expression overfed Xupu and Landes geese. Methods: Sixty male Xupu geese (80 d) and Landes geese (80 d) were selected. After a period of one-week of pre-overfeeding, Xupu and Landes geese were overfed three meals of 550 and 350 g/d, respectively, of a high-carbohydrate diet in the first week of the overfeeding period. The next week, geese were given four meals of 1,200 and 850 g/d, respectively, over 8 to 14 d. Finally, geese were given five meals of 1,600 and 1,350 g/d, respectively, for the last two weeks. Results: After overfeeding for 28 d: Compared with Landes geese, Xupu geese liver weight and liver-to-body weight ratio decreased (p<0.05), while final weight, slaughter weight, total weight gain, abdominal fat weight, and feed-to-liver weight ratio increased (p<0.05). The levels of elaidic acid (C18:1t9), oleic acid (C18:1n-9), eicosenoic acid, and arachidonic acid in the liver of Xupu geese significantly increased (p<0.05), and the levels of myristic acid and stearic acid significantly decreased (p<0.05), while methyleicosanoate acid significantly increased (p<0.05). Xupu geese had higher plasma concentrations of triglyceride and very low density lipoprotein cholesterol (p<0.05), and decreased activities of alanine aminotransferase, aspartate aminotransferase, and lipase (LPS) (p<0.05). Landes geese had higher LPS activity (p<0.05), but lower cholinesterase activity (p<0.05) when compared with Xupu geese. The mRNA expression levels of fatty acid dehydrogenase (FADS) gene, elongase of long-chain fatty acid 1 (ELOVL1) gene, ELOVL5, and acyl-Co A: cholesterol acyltransferase 2 (ACAT2) gene were significantly upregulated (p<0.05) in Landes goose when compared with Xupu geese. Conclusion: This study demonstrates that the liver production performance of Landes geese was better than that of Xupu geese to some extent, which may be closely related to LPS activity, as well as the expression of FADS, ELOVL1, ELOVL5, and ACAT2.