Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2255

A Cytosolic Thioredoxin Acts as a Molecular Chaperone for Peroxisome Matrix Proteins as Well as Antioxidant in Peroxisome  

Du, Hui (Department of Biological Science, Sookmyung Women's University)
Kim, Sunghan (Department of Plant Science, Seoul National University)
Hur, Yoon-Sun (Department of Biological Science, Sookmyung Women's University)
Lee, Myung-Sok (Department of Biological Science, Sookmyung Women's University)
Lee, Suk-Ha (Department of Plant Science, Seoul National University)
Cheon, Choong-Ill (Department of Biological Science, Sookmyung Women's University)
Abstract
Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.
Keywords
chaperone; peroxisome; thioredoxin; uricase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vacca, R.A., de Pinto, M.C., Valenti, D., Passarella, S., Marra, E, and De Gara, L. (2004). Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shockinduced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol. 134, 1100-1112.   DOI   ScienceOn
2 Yamazaki, D., Motohashi, K., Kasama, T., Hara, Y., and Hisabori, T. (2005). Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol. 45, 18-27.
3 Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572.   DOI   ScienceOn
4 Zhang, L., Li, Y., Xing, D., and Gao, C. (2009). Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J. Exp. Bot. 60, 2073-2091.   DOI   ScienceOn
5 Zhang, C.J., Zhao, B.C., Ge, W.N., Zhang, Y.F., Song, Y., Sun, D.Y., and Guo, Y. (2011). An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol. 157, 1884-1899.   DOI
6 Arent, S., Christensen, C.E., Pye, V.E., Norgaard, A., and Henriksen, A. (2010). The multifunctional protein in peroxisomal betaoxidation: structure and substrate specificity of the Arabidopsis thaliana protein MFP2. J. Biol. Chem. 285, 24066-24077.   DOI   ScienceOn
7 Collet, J.F., and Messens, J. (2010). Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal. 13, 1205-1216.   DOI   ScienceOn
8 Balmer, Y., Vensel, W.H., Tanaka, C.K., Hurkman, W.J., Gelhaye, E., Rouhier, N., Jacquot, J.P., Manieri, W., Schurmann, P., Droux, M., et al. (2004). Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc. Natl. Acad. Sci. USA 101, 2642-2647.   DOI
9 Bartsch, S., Monnet, J., Selbach, K., Quigley, F., Gray, J., von Wettstein, D., Reinbothe, S., and Reinbothe, C. (2008). Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc. Natl. Acad. Sci. USA 105, 4933-4938.   DOI   ScienceOn
10 Borges, A.A., Borges-Perez, A., and Fernandez-Falcon M. (2003). Effect of menadione sodium bisulfite, an inducer of plant defenses, on the dynamic of banana phytoalexin accumulation during pathogenesis. J. Agric. Food Chem. 27, 5326-5328.
11 Courteille, A., Vesa, S., Sanz-Barrio, R., Cazale, A.C., Becuwe- Linka, N., Farran, I., Havaux, M., Rey, P., and Rumeau, D. (2013). Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol. 161, 508-520.   DOI
12 Couturier, J., Chibani, K., Jacquot, J.P., and Rouhier, N. (2013). Cysteine-based redox regulation and signaling in plants. Front. Plant Sci. 4, 105.
13 Du, H., Kim, S., Nam, K.H., Lee, M.S., Son, O., Lee, S.H., and Cheon, C.I. (2010). Identification of uricase as a potential target of plant thioredoxin: Implication in the regulation of nodule development. Biochem. Biophys. Res. Commun. 397, 22-26.   DOI   ScienceOn
14 Guan, Q., Lu, X., Zeng, H., Zhang, Y., and Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J. 74, 840-851.   DOI   ScienceOn
15 Gelhaye, E., Rouhier, N., Gerard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P.I., Wingsle, G., Hirasawa, M., Knaff, D.B., et al. (2004). A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc. Natl. Acad. Sci. USA 101, 14545-14550.   DOI   ScienceOn
16 Gelhaye, E., Rouhier, N., Navrot, N., and Jacquot, J.P. (2005). The plant thioredoxin system. Cell Mol. Life Sci. 62, 24-35.   DOI
17 Gomes, A., Fernandes, E., and Lima, J.L. (2005). Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45-80.   DOI   ScienceOn
18 Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R.T., Reumann, S., and Zolman, B.K. (2012). Plant peroxisomes: biogenesis and function. Plant Cell 24, 2279-2303.   DOI   ScienceOn
19 Kern, R., Malki, A., Holmgren, A., and Richarme, G. (2003). Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem. J. 371, 965-972.   DOI
20 Kthiri, F., Le, H.T., Tagourti, J., Kern, R., Malki, A., Caldas, T., Abdallah, J., Landoulsi, A., and Richarme, G. (2008). The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase. Biochem. Biophys. Res. Commun. 374, 668-672.   DOI   ScienceOn
21 Kumar, J.K., Tabor, S., and Richardson, C.C. (2004). Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc. Natl. Acad. Sci. USA. 101, 3759-3764.   DOI   ScienceOn
22 Lemaire, S.D., Michelet, L., Zaffagnini, M., Massot, V., and Issakidis- Bourguet, E. (2007). Thioredoxins in chloroplasts. Curr. Genet. 51, 343-365.   DOI
23 Lamberto, I., Percudani, R., Gatti, R., Folli, C., and Petrucco, S. (2010). Conserved alternative splicing of Arabidopsis transthyretin-like determines protein localization and S-allantoin synthesis in peroxisomes. Plant Cell 22, 1564-1574.   DOI   ScienceOn
24 Lee, M.Y., Shin, K.H., Kim, Y.K., Suh, J.Y., Gu, Y.Y., Kim, M.R., Hur, Y.S., Son, O., Kim, J.S., Song, E., et al. (2005). Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol. 139, 1881-1889.   DOI   ScienceOn
25 Lee, J.R., Lee, S.S., Jang, H.H., Lee, Y.M., Park, J.H., Park, S.C., Moon, J.C., Park, S.K., Kim, S.Y., Lee, S.Y., et al. (2009). Heatshock dependent oligomeric status alters the function of a plantspecific thioredoxin-like protein, AtTDX. Proc. Natl. Acad. Sci. USA 106, 5978-5983.   DOI   ScienceOn
26 Meng, L., Wong, J.H., Feldman, L.J., Lemaux P.G., and Buchanan, B.B. (2010). A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc. Natl. Acad. Sci. USA 107, 3900-3905.   DOI   ScienceOn
27 Meyer, Y., Reichheld, J.P., and Vignols, F. (2005). Thioredoxins in Arabidopsis and other plants. Photosynth. Res. 86, 419-433.   DOI
28 Neuspiel, M., Schauss, A.C., Braschi, E., Zunino, R., Rippstein, P., Rachubinski, R.A., Andrade-Navarro, M.A., and McBride, H.M. (2008). Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102-108.   DOI   ScienceOn
29 Park, S.K., Jung, Y.J., Lee, J.R., Lee, Y.M., Jang, H.H., Lee, S.S., Park, J.H., Kim, S.Y., Moon, J.C., Lee, S.Y., et al. (2009). Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol. 150, 552-561.   DOI   ScienceOn
30 Nuruzzaman, M., Sharoni, A.M., Satoh, K., Al-Shammari, T., Shimizu, T., Sasaya, T., Omura, T., and Kikuchi, S. (2012). The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem. Biophys. Res. Commun. 423, 417-423.   DOI   ScienceOn
31 Santhoshkumar, P., and Sharma, K.K. (2001). Analysis of alphacrystallin chaperone function using restriction enzymes and citrate synthase. Mol. Vis. 7, 172-177.
32 Sanz-Barrio, R., Fernandez-San Millan, A., Carballeda, J., Corral- Martinez, P., Segui-Simarro, J.M., and Farran, I. (2012). Chaperone- like properties of tobacco plastid thioredoxins f and m. J. Exp. Bot. 63, 365-379.   DOI
33 Scranton, M.A., Yee, A., Park, S.Y., and Walling, L.L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J. Biol. Chem. 287, 18408-18417.   DOI
34 Serrato, A.J., Crespo, J.L., Florencio, F.J., and Cejudo, F.J. (2001). Characterization of two thioredoxins h with predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Mol. Biol. 46, 361-371.   DOI   ScienceOn
35 Suzuki, H., and Verma, D.P. (1991). Soybean Nodule-Specific Uricase (Nodulin-35) Is Expressed and Assembled into a Functional Tetrameric Holoenzyme in Escherichia coli. Plant Physiol. 95, 384-389.   DOI   ScienceOn