• Title/Summary/Keyword: Acyl CoA dehydrogenase

Search Result 43, Processing Time 0.027 seconds

Simple Assay Method for Determination of Capsaicinoid Synthetase Activity

  • Kim, Kye-Won;Varindra, R.;Kim, Donghern;Hwang, Seon-Kap;Kim, Jong-Guk;Lee, Shin-Woo
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.230-234
    • /
    • 2000
  • A new method to assay the capsaicinoid synthetase (CS) activity was developed by utilizing NADHcoupled enzyme systems involving pyruvate kinase and lactate dehydrogenase. CS activities in Capsicum placenta, depending upon the kinetics of the NADH oxidation, revealed almost the same profile as compared with those shown using an HPLC-based method. When the substrates, 8-methyl nonanoic acid and vanillylamine, for the CS enzyme were employed separately or simultaneously, it appeared that the two-step reaction, acyl-CoA formation and condensation with vanillyla~ne, of the CS enzyme was a coupled reaction. Thus, this assay method of the CS enzyme can be considered as an alternative to the HPLC-based method, since it has the advantages of rapidity and simplicity as well as reliability when compared with the existing method.

  • PDF

Swim Training Improves Fitness in High Fat Diet-fed Female Mice

  • Jun, Jong-Kui;Lee, Wang-Lok;Lee, Young-Ran;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.151-159
    • /
    • 2010
  • The peroxisome proliferator-activated receptor $\alpha$ (PPAR$\alpha$) is a nuclear transcription factor that plays a central role in lipid metabolism and obesity. Exercise also is a powerful modifier of the manifestations of the lipid metabolism and obesity in animal models and humans with obesity and metabolic syndrome. However, effects of exercise on lipid metabolism and obesity in normal-weight younger female subjects, having functional ovaries and not metabolic disease, remain unexplained. To explore the effects of exercise on the development of obesity and its molecular mechanism in high fat diet-fed female C57BL/6J mice, we experimented the effects of swim training on body weight, adipose tissue mass, serum lipid levels, morphological changes of adipocytes and the expression of PPAR$\alpha$ target genes involved in fat oxidation in skeletal muscle tissue of female C57BL/6J mice. Swim-trained mice had significantly decreased body weight, adipose tissue mass, serum triglycerides compared with female control mice. Histological studies showed that swim training significantly decreased the average size of adipoctyes in parametrial adipose tissue. Swim training did not affect the expression of PPAR$\alpha$ mRNA in skeletal muscle. Concomitantly, swim training did not increase mRNA levels of PPAR$\alpha$ target genes responsible for fatty acid $\beta$-oxidation, such as carnitine palmitoyltransferase 1, medium chain acyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and thiolase in skeletal muscle. In conclusion, these results indicate that swim training regulates lipid metabolism and obesity in high fat diet fed-female mice although swim training did not increase mRNA levels of PPAR$\alpha$ target genes involved in fatty acid $\beta$-oxidation in skeletal muscle, suggesting that swim training may prevent obesity and improve fitness through other mechanisms in female with ovaries, not through the activation of skeletal muscle PPAR$\alpha$.

Sudden Infant Death Syndrome and Inborn Metabolic Disorders (유아돌연사증후군과 유전성대사질환)

  • Yoon, Hye-Ran
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2013
  • Specific genetic conditions may lead to sudden unexpected deaths in infancy, such as inborn errors of fatty acid oxidation and genetic disorders of cardiac ion channels. The disease may present dramatically with severe hypoketotic hypoglycemia, Reye syndrome or sudden death, typically with a peak of frequency around 3-6 month, whilst neonatal sudden death is quite rare. When undetected, approximately 20-25% of infants will die or suffer permanent neurologic impairment as a consequence of the first acute metabolic decompensation. Meanwhile, the advent of newborn screening for metabolic diseases has revealed populations of patients with disorders of fatty acid oxidation (FAO), the most frequent of which is medium chain acyl-CoA dehydrogenase (MCAD) deficiency. Without this screening, affected individuals would likely succumb to sudden infant death syndrome (SIDS). Here we describe an overview of sudden infant death syndrome and inherited metabolic disorder.

  • PDF

Liver PPAR${\alpha}$ and UCP2 are Involved in the Regulation of Ovariectomy-Induced Adiposity and Steatosis by Swim Training

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.239-246
    • /
    • 2010
  • It is suggested that ovariectomy induces body weight gain primarily in the form of adipose tissue in rodents. Since liver peroxisome proliferator-activated receptor ${\alpha}$ (PPAR${\alpha}$) and uncoupling 2 (UCP2) are involved in the regulation of energy expenditure, it was investigated whether swim training regulates ovariectomy-induced adiposity and steatosis through liver PPAR${\alpha}$ and UCP2 activation in female ovariectomized mice, an animal model of postmenopausal women. Swim-trained mice had significantly decreased adipose tissue weights compared with sedentary control mice. Histological analysis showed that hepatic lipid accumulation was inhibited by swim training. Concomitantly, swim training significantly increased mRNA levels of PPAR${\alpha}$ and its target genes responsible for peroxisomal fatty acid ${\beta}$-oxidation, such as acyl-CoA oxidase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and thiolase in the liver. Moreover, swim training induced the mRNA expression of UCP2. These results suggest that swim training can effectively prevent adiposity and steatosis caused by ovariectomy, in part through activation of liver PPAR${\alpha}$ and UCP2 in female obese mice.

Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice (고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구)

  • Jeon, Woo-Jin;Kim, Ji-Young;Oh, Ik-Hoon;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.192-202
    • /
    • 2017
  • In this study, factors involved in lipid and energy metabolism following treatment with ethanolic extract of the Polygonatum sibiricum rhizome (ID1216) were evaluated in high-fat diet-induced obese mice. ID1216-treated mice showed a significant reduction in weight gain compared to non-treated mice. ID1216 treatment increased the protein levels of AMP-dependent protein kinase, sirtuin1, peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1-${\alpha}$ ($PGC1{\alpha}$), peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and uncoupling proteins in the adipose tissue, liver and muscle compared to vehicle treatment. Analysis of downstream signals of the sirtuin1 $PGC1{\alpha}$-$PPAR{\alpha}$ pathway showed that ID1216 regulates the expression of ${\beta}$-oxidation related genes such as acyl-CoA oxidase, carnitine palmitoyltransferase1, acyl-CoA dehydrogenase and adipocyte protein 2. In addition, ID1216 increased the expression of adipose triglyceride lipase. These results suggest that ID1216 has anti-obesity effects by regulating the genes involved thermogenesis, ${\beta}$-oxidation and lipolysis in a diet-induced obesity model.

What is the Key Step in Muscle Fatty Acid Oxidation after Change of Plasma Free Fatty Acids Level in Rats?

  • Doh, Kyung-Oh;Suh, Sang-Dug;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.173-177
    • /
    • 2005
  • The purpose of this study was to discern the critical point in skeletal muscle fatty acid oxidation by changing plasma free fatty acids (FFA) level in rat. In the study, 3 key steps in lipid oxidation were examined after changing plasma FFA level by acipimox. The rates of both palmitate and palmitoylcarnitine oxidation were decreased by decrease of plasma FFA level, however, carnitine palmitoyl transferase (CPT) 1 activity was not changed, suggesting CPT1 activity may not be involved in the fatty acid oxidation at the early phase of plasma FFA change. In the fasted rats, ${\beta}-hydroxy$ acyl-CoA dehydrogenase (${\beta}$-HAD) activity was depressed to a similar extent as palmitate oxidation by a decrease of plasma FFA level. This suggested that ${\beta}-oxidation$ might be an important process to regulate fatty acid oxidation at the early period of plasma FFA change. Citrate synthase activity was not altered by the change of plasma FFA level. In conclusion, the critical step in fatty acids oxidation of skeletal muscles by the change of plasma FFA level by acipimox in fasting rats might be the ${\beta}-oxidation$ step rather than CPT1 and TCA cycle pathways.

The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • This study determined the effects of fucoxanthin on gene expressions related to lipid metabolism in rats with a high-fat diet. Rats were fed with normal fat diet (NF, 7% fat) group, high fat diet group (HF, 20% fat), and high fat with 0.2% fucoxanthin diet group (HF+Fxn) for 4 weeks. Body weight changes and lipid profiles in plasma, liver, and feces were determined. The mRNA expressions of transcriptional factors such as sterol regulatory element binding protein (SREBP)-1c, Carnitine palmitoyltransferase-1 (CPT1), Cholesterol $7{\alpha}$-hydroxylase1 (CYP7A1) as well as mRNA expression of several lipogenic enzymes were determined. Fucoxanthin supplements significantly increased plasma high density lipoprotein (HDL) concentration (P < 0.05). The hepatic total lipids, total cholesterols, and triglycerides were significantly decreased while the fecal excretions of total lipids, cholesterol, and triglycerides were significantly increased in HF+Fxn group (P < 0.05). The mRNA expression of hepatic Acetyl-CoA carboxylase (ACC), Fatty acid synthase (FAS), and Glucose-6-phosphate dehydrogenase (G6PDH) as well as SREBP-1C were significantly lower in HF+Fxn group compared to the HF group (P < 0.05). The hepatic mRNA expression of Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and Acyl-CoA cholesterol acyltransferase (ACAT) were significantly low while lecithin-cholesterol acyltransferase (LCAT) was significantly high in the HF+Fxn group (P < 0.05). There was significant increase in mRNA expression of CPT1 and CYP7A1 in the HF+Fxn group, compared to the HF group (P < 0.05). In conclusion, consumption of fucoxanthin is thought to be effective in improving lipid and cholesterol metabolism in rats with a high fat diet.

The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet

  • Ha, Ae Wha;Ying, Tian;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • BACKGROUD/OBEJECTIVES: The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS: Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS: Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS: Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

A cost-benefit analysis on tandem mass spectrometry of inherited metabolic diseases in Korea (한국에서의 유전성 대사 질환에 대한 탄뎀 매스 검사의 경제성 분석)

  • Ryu, Hyoung-Ock;Lee, Dong-Hwan;Choi, Tae-Youn;Yoon, Hye-Ran
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.53-63
    • /
    • 2007
  • Purpose : Tandem mass spectrometry (MS/MS) is effective screening test for inherited metabolic diseases. In this study, we estimate potential costs and benefits of using tandem mass spectrometry (MS/MS) to screen new borns for inherited metabolic diseases (phenylketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency) in Korea. Methods : From April 2001 to March 2004, 79,179 new borns were screened for amino acid disorders, organic acid disorders, and fatty acid oxidative disorders. Twenty-eight new borns were diagnosed with one of the metabolic disorder and the collective estimated prevalence amounted to 1 in 2,800 with a sensitivity of 97.67%, a specificity of 99.28%, a recall rate of 0.05%, and a positive preditive value of 6.38%. We calculated and compared the total costs in case when neonatal screening on pheny lketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency is implemented, and when not. Results : If the neonatal screening on pheny lketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency is implemented, total benefits far exceed costs at a ratio of 1.40:1. Conclusion : Although, this study only concerns the monetary aspects of the neonatal screening, tandem mass spcetrometry for neonatal screening is cost-effective compared with not screening. The study appears to support the introduction of tandem mass spectrometry into a Korea neonatal screening programme for inherited metabolic diseases.

  • PDF