• Title/Summary/Keyword: Actuators

Search Result 1,940, Processing Time 0.033 seconds

Muscle-Inspired Serially-Connected Digital Actuators for Low-Voltage, Wide-Range, High-Precision Displacement Control (저전압 대변위 고정도 구동을 위한 근육모사 직렬연결 디지털 구동기)

  • Lee, Jae-Yong;Lee, Won-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • This paper presents muscle-inspired serial digital actuators, achieving the improvement of the range-to-precision and range-to-voltage performance. We propose a weight-balanced design for the serial actuators with serpentine springs using serial arrangement of digital actuators. We have measured the displacement range, precision, and drive voltage at unit and serial actuation of 1Hz. The serial digital actuators produce a full range displacement of $28.44{\pm}0.02{\mu}m$, accumulating the unit displacement of $2.8{\pm}0.5{\mu}m$ at the operating voltage of $4.47{\pm}0.07V$. In addition, the serial digital actuators having the displacement precision of $37.94{\pm}6.26nm$ do not accumulate the precision of the unit actuators, $36.0{\pm}17.7nm$. We experimentally verify that the serial digital actuators achieve the range-to-squared-voltage ratio of $1.423{\mu}m/V^2$ and the range-to-precision ratio of 749.6.

Modular and versatile platform for the benchmarking of modern actuators for robots

  • Garcia, Elena;Gonzalez-de-Santos, Pablo
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.135-161
    • /
    • 2013
  • This work presents a test platform for the assessment and benchmarking of modern actuators which have been specifically developed for the new field and service robotics applications. This versatile platform has been designed for the comparative analysis of actuators of dissimilar technology and operating conditions. It combines a modular design to adapt to linear and rotational actuators of different sizes, shapes and functions, as well as those with different load capacities, power and displacement. This test platform emulates the kinematics of robotic joints while an adaptive antagonist-load actuator allows reproducing the variable dynamic loads that actuators used in real robotics applications will be subjected to. A data acquisition system is used for monitoring and analyzing test actuator performance. The test platform combines hardware and software in the loop to allow actuator performance characterization. The use of the proposed test platform is demonstrated through the characterization and benchmarking of three controllable impedance actuators recently being incorporated into modern robotics.

Development of the Vibration Isolation System using Piezoceramic Sensors and Actuators (압전세라믹 감지기와 작동기를 이용한 방진 시스템 개발)

  • Seok Heo;Moon K. Kwak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.309.2-309
    • /
    • 2002
  • This paper is concerned with the development of the vibration isolation system using piezoelectric actuators and sensors. The active vibration absorber system consists of 4 pairs of PZT actuators bonded on aluminum plates making s- shaped device. Hence, the active system is directly connected to the passive system. The rubber attached to the end of the beam is connected to the upper base as a structural member. It allows bending thus maximizing the vertical movement generated by the piezoceramic actuators. (omitted)

  • PDF

A Single-crystal PMN-29PT Stack Actuator: Fabrication and Performance (단결정 PMN-29PT 적층형 작동기: 제작과 성능)

  • Park, Hoon Cheol;Adyatama, Panji;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • Piezoelectric PMN-29PT single crystal multilayer actuators [100 $mm^2$ in cross section and 22 mm in length] are designed and fabricated by stacking square plates [$10{\times}10{\times}0.5(t)\;mm^3$] of PMN-29PT single crystals having a $d_{33}$ of about 1,500 pC/N. The characteristics of PMN-29PT multilayer actuators are compared with those of P-025.40P multilayer PZT ceramic actuators [490 $mm^2$ in cross section and 60 mm in length] produced by PI in Germany. Even though the total volume of the PMN-29PT single crystal multilayer actuator is only about 7.5% of that of the P-025.40P ceramic multilayer actuator, PMN-29PT single crystal multilayer actuators are expected to show very similar properties to P-025.40P ceramic actuators in terms of static stroke and blocking force. Therefore, on the basis of their smaller mass and volume compared to the conventional PZT ceramic multilayer actuators, piezoelectric PMN-29PT single crystal multilayer actuators have significant potential regarding the development of various high performance actuators for aerospace subsystems.

Research on the multilayered animatronics system with CAN (CAN을 이용한 계층구조를 갖는 분산형 애니매트로닉스 시스템에 관한 연구)

  • Lee, Choong-Ho;Chang, Seong-Ryong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.131-133
    • /
    • 2007
  • The aninmatronics is a technique for representing animals or new kinds of living things like aliens with robots and machines. The motions of cameras and objects can be made complicatedly and finely by using various kinds of actuators. But it needs so many actuators to make complicated motions. To handle difficulty to synchronize actuators and to make a database of motions of actuators, the animatronics system that has layered structure with CAN is proposed. The system is devided by a three layers-PC, microcontrollers and actuators so that the problems which arise from using too many actuators such as management of data and time delay of processing data can be handled.

  • PDF

Prolonging Network Lifetime by Optimizing Actuators Deployment with Probabilistic Mutation Multi-layer Particle Swarm Optimization

  • Han, Yamin;Byun, Heejung;Zhang, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2959-2973
    • /
    • 2021
  • In wireless sensor and actuator networks (WSANs), the network lifetime is an important criterion to measure the performance of the WSAN system. Generally, the network lifetime is mainly affected by the energy of sensors. However, the energy of sensors is limited, and the batteries of sensors cannot be replaced and charged. So, it is crucial to make energy consumption efficient. WSAN introduces multiple actuators that can be regarded as multiple collectors to gather data from their respective surrounding sensors. But how to deploy actuators to reduce the energy consumption of sensors and increase the manageability of the network is an important challenge. This research optimizes actuators deployment by a proposed probabilistic mutation multi-layer particle swarm optimization algorithm to maximize the coverage of actuators to sensors and reduce the energy consumption of sensors. Simulation results show that this method is effective for improving the coverage rate and reducing the energy consumption.

Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion (Preisach 모델을 이용한 압전액츄에이터 이력 보상)

  • Chung C.Y.;Lee D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

Performance analyses of antagonistic shape memory alloy actuators based on recovered strain

  • Shi, Zhenyun;Wang, Tianmiao;Da, Liu
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.765-784
    • /
    • 2014
  • In comparison with conventional shape memory actuated structures, antagonistic shape memory alloy (SMA) actuators permits a fully reversible two-way response and higher response frequency. However, excessive internal stress could adversely reduce the stroke of the actuators under repeated use. The two-way shape memory effect might further decrease the range of the recovered strain under actuation of an antagonistic SMA actuator unless additional components (e.g., spring and stopper) are added to regain the overall actuation capability. In this paper, the performance of all four possible types of SMA actuation schemes is investigated in detail with emphasis on five key properties: recovered strain, cyclic degradation, response frequency, self-sensing control accuracy, and controllable maximum output. The testing parameters are chosen based on the maximization of recovered strain. Three types of these actuators are antagonistic SMA actuators, which drive with two active SMA wires in two directions. The antagonistic SMA actuator with an additional pair of springs exhibits wider displacement range, more stable performance under reuse, and faster response, although accurate control cannot be maintained under force interference. With two additional stoppers to prevent the over stretch of the spring, the results showed that the proposed structure could achieve significant improvement on all five properties. It can be concluded that, the last type actuator scheme with additional spring and stopper provide much better applicability than the other three in most conditions. The results of the performance analysis of all four SMA actuators could provide a solid basis for the practical design of SMA actuators.

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.