• 제목/요약/키워드: Actuation Force Optimization

검색결과 8건 처리시간 0.021초

마이크로 로봇 작동 성능 향상을 위한 FEM 기반의 전자석 배치 베이지안 최적화 (FEM-based Bayesian Optimization of Electromagnet Configuration for Enhancing Microrobot Actuation)

  • 권혁진;손동훈
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.45-52
    • /
    • 2024
  • This paper introduces an approach to enhance the performance of magnetic manipulation systems for microrobot actuation. A variety of eight-electromagnet configurations have been proposed to date. The previous study revealed that achieving 5 degrees of freedom (5-DOF) control necessitates at least eight electromagnets without encountering workspace singularities. But so far, the research considering the influence of iron cores embedded in electromagnets has not been conducted. This paper offers a novel approach to optimizing electromagnet configurations that effectively consider the influence of iron cores. The proposed methodology integrates probabilistic optimization with finite element methods (FEM), using Bayesian Optimization (BO). The Bayesian optimization aims to optimize the worst-case magnetic force generation for enhancing the performance of magnetic manipulation system. The proposed simulation-based model achieves approximately 20% improvement compared to previous systems in terms of actuation performance. This study has the potential for enhancing magnetic manipulation systems for microrobot control, particularly in medical and microscale technology applications.

줄꼬임에 기반한 상지 외골격 로봇 (Twisted String-based Upper Limb Exoskeleton)

  • 이성준;유지환
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.

Optimized Design of a Planar Haptic Device Using Passive Actuators

  • Kim, Tae-Woo;Cho, Chang-Hyun;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1565-1570
    • /
    • 2003
  • Passive Haptic Devices have more benefit than the active in Stability. But Apart from benefits, it shows poor performance in haptic display. The author proposed the passive FME(Force Manipulability Ellipsoid) which can graphically show force generating ability of a passive haptic device. In this paper, performance indexes for the force approximation and pseudo friction cone are obtained with the passive FME and an optimized planar device with the indexes is proposed. Based on the above theory, experiment is conducted.

  • PDF

MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화 (Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology)

  • 김민규;정용섭;조진호
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

지능구조물과 ASTROS*를 이용한 플러터 제어 (Control of Flutter using ASTROS* with Smart Structures)

  • 김종선;남창호
    • 한국항행학회논문지
    • /
    • 제5권1호
    • /
    • pp.85-96
    • /
    • 2001
  • 최근에 통합 설계 최적화 프로그램인 $ASTROS^*$와 Aeroservoelasticity(ASE) 모듈에 지능구조물의 해석 모듈을 통합하는 연구가 수행되었다. 통합된 소프트웨어를 이용해 플러터 억제 시스템을 설계하는 연구를 F-16모델을 이용해 수행하였으며 능동 제어 시스템을 위하여 신경망을 이용한 제어기가 설계되었다. 압전작동기에 의해 발생한 변형을 고려하기 위해 지능구조물 모듈은 $ASTROS^*$내의 열응력 해석 모듈을 개량하여 개발되었으며 ASE내에서 조종면을 이용한 입력과 압전작동기를 이용한 입력의 상호 호환성을 가능하게 하였다. 수치 예를 통해 개발된 제어시스템이 플러터속도를 증가시키는 데 효과적임을 보였다.

  • PDF

소형 및 저비용화를 위한 전자석-스프링 구동장치 연구 (A Study on Electromagnetic-Spring Actuator for Low Cost Miniature Actuators)

  • 김세웅;이창섭;최현영
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.392-400
    • /
    • 2019
  • This paper provides a fin actuation system of missile based on electromagnetic-spring mechanism to miniaturize the system and lower the cost. Compared with proportional electro-mechanical actuators, the output of Electromagnetic-Spring Actuators(EMSA) has two or three discrete states, but the mechanical configuration of EMSA is simple since it does not need power trains like gears. The simple mechanism of EMSA makes it easy to build small size, low cost, and relatively high torque actuators. However, fast response time is required to improve the dynamic performance and accuracy of missiles since bang-off-bang operation of EMSA affects the flight performance of missile. In this paper the development of EMSA including parameter optimization and mathematical modeling is described. The simulation results using Simulink and experimental test results of prototype EMSAs are presented.

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.