DOI QR코드

DOI QR Code

FEM-based Bayesian Optimization of Electromagnet Configuration for Enhancing Microrobot Actuation

마이크로 로봇 작동 성능 향상을 위한 FEM 기반의 전자석 배치 베이지안 최적화

  • Hyeokjin Kweon (Mechanical Engineering, Pusan National University) ;
  • Donghoon Son (Mechanical Engineering, Pusan National University)
  • Received : 2023.10.27
  • Accepted : 2023.11.22
  • Published : 2024.02.29

Abstract

This paper introduces an approach to enhance the performance of magnetic manipulation systems for microrobot actuation. A variety of eight-electromagnet configurations have been proposed to date. The previous study revealed that achieving 5 degrees of freedom (5-DOF) control necessitates at least eight electromagnets without encountering workspace singularities. But so far, the research considering the influence of iron cores embedded in electromagnets has not been conducted. This paper offers a novel approach to optimizing electromagnet configurations that effectively consider the influence of iron cores. The proposed methodology integrates probabilistic optimization with finite element methods (FEM), using Bayesian Optimization (BO). The Bayesian optimization aims to optimize the worst-case magnetic force generation for enhancing the performance of magnetic manipulation system. The proposed simulation-based model achieves approximately 20% improvement compared to previous systems in terms of actuation performance. This study has the potential for enhancing magnetic manipulation systems for microrobot control, particularly in medical and microscale technology applications.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C1009980) and Pusan National University Research Grant, 2021

References

  1. E. Diller and M. Sitti, "Micro-scale mobile robotics," Foundations and Trends® in Robotics, vol. 2, no. 3, pp. 143-259, 2013, DOI: 10.1561/2300000023.
  2. C. K. Schmidt, M. Medina-Sanchez, R. J. Edmondson, and O. G. Schmidt, "Engineering microrobots for targeted cancer therapies from a medical perspective," Nature Communications, vol. 11, no. 1, Nov., 2020, DOI: 10.1038/s41467-020-19322-7.
  3. M. Horodynski, M. Kuhmayer, A. Brandstotter, K. Pichler, Y. V. Fyodorov, U. Kuhl, and S. Rotter, "Optimal wave fields for micromanipulation in complex scattering environments," Nature Photonics, vol. 14, no. 3, Nov., 2019, DOI: 10.1038/s41566-019-0550-z.
  4. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, "Microrobots for minimally invasive medicine," Annual review of biomedical engineering, vol. 12, pp. 55-85, Aug., 2010, DOI: 10.1146/annurev-bioeng-010510-103409.
  5. A. J. Petruska and B. J. Nelson, "Minimum Bounds on the Number of Electromagnets Required for Remote Magnetic Manipulation," IEEE Transactions on Robotics, vol. 31, no. 3, pp. 714-722, Jun., 2015, DOI: 10.1109/TRO.2015.2424051.
  6. A. Pourkand and J. J. Abbott, "A Critical Analy sis of Eight-Electromagnet Manipulation Systems: The Role of Electromagnet Configuration on Strength, Isotropy, and Access," IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2957-2962, Oct., 2018, DOI: 10.1109/LRA.2018.2846800.
  7. I. S. M. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, "Three-dimensional closed-loop control of self-propelled microjets," Applied physics letters, vol. 103, no. 17, Oct., 2013, DOI: 10.1063/1.4826141.
  8. E. Diller and M. Sitti, "Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers," Advanced Functional Materials, vol. 24, no. 28, pp. 4397-4404, Apr., 2014, DOI: 10.1002/adfm.201400275.
  9. D. E. David, "Remote actuation and control of multiple magnetic micro-robots," Ph.D. dissertation, Carnegie Mellon University, 2013, [Online], https://www.proquest.com/dissertations-theses/remote-actuation-control-multiple-magnetic-micro/docview/1450207484/se-2.
  10. M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson, "OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation," IEEE Transactions on Robotics, vol. 26, no. 6, pp. 1006-1017, Dec., 2010, DOI: 10.1109/TRO.2010.2073030.
  11. "Magnetecs CGCI," 2018, [Online], http://www.magnetecs.com/overview.php, Accessed: Oct. 1, 2023.
  12. S. Yuan, Y. Wan, and S. Song, "RectMag3D: A magnetic actuation system for steering milli/microrobots based on rectangular electromagnetic coils," Applied Sciences, vol. 10, no. 8, Apr., 2020, DOI: 10.3390/app10082677.
  13. M. Curti, J. J. H. Paulides, and E. A. Lomonova, "An overview of analytical methods for magnetic field computation," 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, pp. 1-7, 2015, DOI: 10.1109/EVER.2015.7112938.
  14. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de. Freitas, "Taking the Human Out of the Loop: A Review of Bayesian Optimization," the IEEE, vol. 104, no. 1, Jan., 2016, DOI: 10.1109/JPROC.2015.2494218.
  15. K. W. Yung, P. B. Landecker, and D. D. Villani, "An Analytic Solution for the Force Between Two Magnetic Dipoles," Physical Separation in Science and Engineering, vol. 9, Apr., 1998, DOI: 10.1155/1998/79537.
  16. J. J. Abbott and B. Osting, "Optimization of coreless electromagnets to maximize field generation for magnetic manipulation systems," IEEE Magnetics Letters, vol. 9, pp. 1-4, Oct., 2017, DOI: 10.1109/LMAG.2017.2768021.