• Title/Summary/Keyword: Actual traffic volume

Search Result 83, Processing Time 0.028 seconds

An Analysis of Baggage Demand for Designing Baggage Handling System(BHS) (A Case Study of Incheon International Airport) (수하물처리시설 설계를 위한 수하물 수요분석(인천국제공항의 예))

  • Bae, Byung-Uk;Lee, Hong-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.1 s.72
    • /
    • pp.19-30
    • /
    • 2004
  • Once baggage demand of passengers is forecast, BHS requirements must be analyzed, i.e., the number of originating/transferring/terminating bags to be handled, the number of conveyor lines to be installed, the number of containers for baggage make-up, the number of claim devices for baggage claim, and so on. Therefore, the determination of the baggage traffic volume is one of the most important analysis components for the airport design. Accordingly, this research proposes time-based distribution table models in order to accurately estimate BHS requirements to obtain design criteria in airport design phase. As the BHS requirements are ascertained, related requirements of the facilities can be determined by applying actual specifications of devices, i.e., throughput. This research found that the proposed mathematical model gives a good reflection of IIA (Incheon International Airport)'s operational condition. That means the model provides apparent reliability and feasibility. Furthermore, the specifications of devices are the newest figures. This fact supports that the research provides more effcient and reliable results.

Legal and Practical Issues in Parking Space Problems at the Port Hinterland(Distripark): A Case Study of Busan New Port (항만배후부지개발시 단지 내 주차난 해소를 위한 법률적.실무적 시사점 - 부산항 신항 배후부지의 사례를 중심으로 -)

  • Cho, Chanhyouk;Baik, Jongsil
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.4
    • /
    • pp.99-120
    • /
    • 2012
  • The ongoing development of Distriparks, the increase in workers inside the warehouses, and the growth in traffic volume have shifted the attention of the many D.C. operators on how to utilize their warehouse spaces more profitably and economically. A total of 550 cars and trucks are illegally parked at the distribution centers everyday. To meet these challenges, port authorities are looking closely at how they can establish effective countermeasures to solve this problem and satisfy customers of the Distripark. In order to answer these questions, this article sought to identity and analyze the current status of the illegal parking issues and main causes of that phenomena. In addition to summarizing an actual outcomes of the illegal parking problems, the research also examines the legal and practical countermeasures of this issues. Finally this research tries to find future solutions for ports in the Distripark development process, with particular reference to the legal and managerial aspects.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.

A Study of the Vehicle Allocation Planning System based on Transportation Cost (운송비 기반 배차계획 시스템에 관한 연구)

  • Kang, Hee-Yong;Kim, Jeong-Su;Shin, Yong-Tae;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.319-322
    • /
    • 2014
  • Due to the active use of the internet currently, the transportation volume of logistics firms is dramatically increasing, but it is not easy to secure available vehicles and vehicle suppliers, so it is the most important for logistics companies to streamline transportations management and process. For such reason, there have been a number of studies to deal with VRP and VSP for efficient vehicle allocation planning of vehicle suppliers and vehicles. But it is hard to reflect traffic situations changing everyday and detailed geographic conditions, and it requires big scale of database and huge calculation time consumption as increase number of depots, which is very inefficient. For solving the vehicle allocation planning problems of 3PL firms with various constraints due to the transportation cost, this paper suggest new vehicle allocation information system and an algorithm based transportation cost/income. Also this paper presents actual results applied to a logistics company. As a result, the transportation profit of vehicle suppliers increased by 11 percent in average, when the developed transportation cost-based vehicle allocation system applied.

  • PDF

An Improvement of Backhaul Transport with the Mathematical Model of Inter-Terminal Transportation Using Buffer Space (완충지역을 활용한 타부두 환적 컨테이너 운송 모형의 복화율 개선 효과 분석)

  • Park, Hyoung-Jun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.236-242
    • /
    • 2022
  • Busan Port is operated separately by a number of terminal operators, resulting in a large number of ITT (Inter-Terminal Transportation) volumes. The occurrence of ITT volume causes various problems such as additional transportation cost, empty truck trips, truck delays and terminal congestion, weakening Busan Port's competitiveness. Among them, the empty truck trip problem is a representative factor, that exacerbates the cost problem of the ITT operation at Busan Port. But the ITT backhaul rate at Busan Port remains low. To strengthen the transhipment competitiveness of Busan Port, it is necessary to increase the ITT backhaul rate. In this paper, to improve ITT backhaul rate, we present a mathematical model for maximizing backhaul transport using buffer space. And we analyzed the improving effects of backhaul transport using buffer space through experiments based on actual operating data.

Development of Predicting Model for Livestock Infectious Disease Spread Using Movement Data of Livestock Transport Vehicle (가축관련 운송차량 통행 데이터를 이용한 가축전염병 확산 예측모형 개발)

  • Kang, Woong;Hong, Jungyeol;Jeong, Heehyeon;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.78-95
    • /
    • 2022
  • The result of previous studies and epidemiological invstigations for infectious diseases epidemic in livestock have shown that trips made by livestock-related vehicles are the main cause of the spread of these epidemics. In this study, the OD traffic volume of livestock freight vehicle during the week in each zone was calculated using livestock facility visit history data and digital tachograph data. Based on this, a model for predicting the spread of infectious diseases in livestock was developed. This model was trained using zonal records of foot-and-mouth disease in Gyeonggi-do for one week in January and February 2015 and in positive, it was succesful in predicting the outcome in all out of a total 13 actual infected samples for test.

Region-wide Road Transport CO2 Emission Inventory (지역단위 도로교통 탄소배출 인벤토리구축 방법론)

  • Shin, Yong Eun;Ko, Kwang Hyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.297-304
    • /
    • 2013
  • Due to its excessive $CO_2$ emissions, road transport sector becomes a target for emission reduction strategies. Although precise and reliable emissions inventories are necessary for evaluating plans and strategies, developing the region-wide inventory is a difficult task mainly because of a lack of data including travel patterns and modal volumes in the reginonal context. Most existing inventory methodologies employ fuel sale data within the target region, which ignores actual regional traffic patterns and thus not suited to its geographical context. To overcome these problems, this study develops region-wide $CO_2$ emissions inventory methodology by utilizing the Korea Transport DB (KTDB). KTDB provides a number of useful information and data, such as road network with which one can identify in and out trips over the entire region, traffic volumes of various modes, distance of travel, travel speed and so on. A model of equations that allow the computation of volume of $CO_2$ emitting from the road transport activities within the target region is developed. Using the model, numerical analyses are performed for the case of Busan Metropolitan City to demonstrate the applicability of the developed model. This study is indeed exploratory in the sense that using the existing data, it develops the $CO_2$ emissions inventory methodology which can produce better results than those from conventional fuel sales methodology. This study also suggests further reresarch directions to develop more refined methodologies in region-wide basis.

A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program (PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구)

  • Choi, Yong-Soon;Baek, Se-Ryong;Jung, Jong-Kil;Cho, Jeong-Kwon;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Along with the recent increase in traffic volume of vehicles, accidents involving rollover of vehicles have been rapidly increased, resulting in an increase casualties. And to prevent this, various technologies such as vehicle crash test equipment and analysis program development have been advanced. In this study, the applied vehicle model is FORD EXPLORER model, and PC-Crash program for vehicle collision analysis is used to predict the rollover accident behavior of SUV and the collision velocity. Compared with the actual rollover behavior of SUV through the FMVSS No 208 regulations, the analysis results showed similar results, the characteristics of the collision velocity and roll angle showed a tendency that the error rate slightly increased after 1000 msec. Then, as a result of considering using the database of NHTSA, it is shown that the rollover accident occur most frequently in the range of the collision velocity of 15~77 km/h and the collision angle of $22{\sim}74^{\circ}$. And it is possible to estimate the vehicle speed and collision time when the vehicle roof is broken by reconstructing the vehicle starting position, the roof failure position and the stop position by applying the actual accident case.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

A Study on the Risk Assessment of River Crossing Pipeline in Urban Area (도심지 하천매설배관의 위험성 평가에 관한 연구)

  • Park, Woo-Il;Yoo, Chul-Hee;Shin, Dong-Il;Kim, Tae-Ok;Lee, Hyo-Ryeol
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, quantitative risk assessment was carried out for city gas high-pressure pipelines crossing through urban rivers. The risk assessment was performed based on actual city gas properties, traffic volume and population and weather data in the worst case scenario conditions. The results confirmed that the social and individual risks were located in conditionally acceptable areas. This can be judged to be safer considering that the risk mitigation effect of protecting the pipes or installing them in the protective structure at the time of the construction of the river buried pipe is not reflected in the result of the risk assessment. Also, SAFETI v8.22 was used to analyze the effects of wind speed and pasquil stability on the accident damage and dispersion distances caused by radiation. As a result of the risk assessment, the safety of the pipelines has been secured to date, but suggests ways to improve safety by preventing unexpected accidents including river bed changes through periodic inspections and monitoring.