• Title/Summary/Keyword: Active vehicle suspension

Search Result 151, Processing Time 0.027 seconds

Active Control System of a Vehicle Suspension for improving Ride Quality (승차감향상을 위한 자동차현가장치의 능동제어시스템)

  • Park, Ho;Jeon, Euy-Sik;Roh, Byung-Ok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.102-109
    • /
    • 1998
  • As the fundamental study of an active suspension system, computer simulation is performed using a quarter model. Design data for the development of active suspension system are presented through performance estimation of active control laws in the time and frequency domain. The verification of compromise between ride quality and handling characteristics is carried out.

  • PDF

A Study of Hybrid Control of Active Suspension System (능동 현가계의 합성 제어에 관한 연구)

  • 김효준;박혁성;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.345-350
    • /
    • 1996
  • The suspension system plays an important role in vehicle performance. To improve suspension characteristics related to riding comfort and handling stability simultaneously, active suspension system is developed. In this study, a hybrid control scheme is proposed, the idea of which is that the sliding mode control is applied to nonlinear hydraulic system and the skyhook control is applied for controlling the motion of the suspension system. The performance of the proposed control method is evaluated by simulation and experiment of a half car active suspension system.

  • PDF

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.

A study on development of hydraulic active suspension system (유압식 능동 현가시스템의 개발에 관한 연구)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

Performance Evaluation of a Full Vehicle with Semi-active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

Performance Evaluation of a Full Vehicle with Semi-Active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.337-342
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

  • PDF

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

A CONTROLLER DESIGN OF ACTIVE SUSPENSION USING EVOLUTION STRATEGY AND NEURAL NETWORK

  • Cheon, Jong-Min;Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1530-1533
    • /
    • 2005
  • In this paper, we design a Linear Quadratic Gaussian controller for the active suspension. We can improve the inherent suspension problem, trade-off between the ride quality and the suspension travel by selecting appropriate weights in the LQ-objective function. Because any definite rules for selecting weights do not exist, we use an optimization-algorithm, Evolution Strategy (ES) to find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle's state variables. The frequencies and proper control gains are used for the neural network data. During a vehicle running, the trained on-line neural network is activated and provides the proper gains for non-trained frequencies. For the full-state feedback control, Kalman filter observes the full states and Fourier transform is used to detect the frequency of the road.

  • PDF

A Study on Active Suspension Control System in Vehicle Bouncing and Pitching Vibration for Improving Ride Comfort (승차감 향상을 위한 차체 상하.피칭 능동 현가제어에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.325-331
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting active robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design control system. Numerical example is shown for validity of robust control system design in active suspension system.

  • PDF

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF