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1. INTRODUCTION 
 

The design objectives of vehicle suspensions are to improve 

the ride quality by reducing the vertical vibration from the 

road and to make the handling performance better by 

maintaining the traction between the tires and the road. 

Though passive suspensions with only springs and 

shock-absorbers are economical in the cost, the energy 

consumption, and the areas for installation, it is difficult to 

treat the variable driving environments, using only the fixed 

design constants. Passive suspensions are very restrictive in 

the inherent suspension problem, the trade-off between the 

tide quality and the suspension travel[1]. Since some 

drawbacks of passive suspensions, active suspensions are used 

to solve the above problems, having high cost and energy 

consumption.  

The control theories for active suspensions are skyhook 

control[2] and optimal control[3-5], etc. In this paper, we use 

LQG(Linear Quadratic Gaussian) controller for the active 

suspension. It is important to select the appropriate weights in 

the LQ-objective function, but any clear rules for selection do 

not exist. So, a designer must depend on the trial and error 

based on his experiences[6]. From this reason, we replace the 

designer’s troublesome task with an optimization algorithm, 

Evolution Strategy(ES) which is a simple algorithm but has an 

excellent search ability[7]. Using ES, we can find the proper 

weights and the control gains for selected frequencies which 

have major effects on the vibrations of the vehicle’s state 

variables. 

The frequencies and proper control gains are used for the 

neural network training data, as input and output, respectively. 

During a vehicle running, the trained on-line neural network is 

activated and provides the proper gains for non-trained 

frequencies.  

 

2. SUSPENSION MODEL 
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Fig. 1 Quarter-car model for Active suspensions. 

Fig. 1 shows a quarter car model with the active suspension 

system composed of a spring, a damper and an active actuator, 

between sprung mass, Ms and unsprung mass, Mu.  

The motion equations from the above quarter car model are 

represented as follows, 
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where Ks is the suspension spring constant, Cs is the 

suspension damper constant, Kt is the tire spring constant, and 

Ua is the actuator force. zs, zu, and r are the displacements of 

the sprung mass, the unsprung mass and the disturbance from 

the road, respectively. 

 

3. DESIGN OF THE CONTROLLER 

 

3.1 LQG  
LQG control composes an output feedback controller with 

an optimal observer and an optimal controller. As the optimal 

observer, Kalman filter observes the full-state variables from 

the sensed outputs. The observed full-state variables are used 

to make the control input with the optimal control gain. 

LQ-optimal controller has the control objective of minimizing 

the quadratic objective function for a stabilizable and linear 

plant. The objective function under this condition is written as 

following,  
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The weights {ρ1, ρ2, ρ3, ρ4, ρ5} in the objective function J of 

Eq. (2) are important elements which determine the poles and 

eigenvalues of the closed loop system. The state variables, 

us zzx −=1
, 

szx &=2
, rzx u −=3

, 
uzx &=4
are set up for the 

above objective function. We can obtain the actuator force, Ua 

= -Kx, using the full-state feedback. By solving the following 

ARE(Algebraic Ricatti Equation)  
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where P, the solution of Eq. (3) is a positive semi-definite 

symmetric matrix, we can take the control gain, K from 
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)(1 TT NPBRK += − . ‘A’ and ‘B’ are the system matrix and 

the input coupling matrix of the given state equation, 

respectively. Q and R are the state weighting matrix and the 

control weight matrix in the cost function J, respectively. 

LQG has another cost function for observing states. By 

solving the following FARE(Filter Algebraic Ricatti 

Equation), 
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ΣΣΣΣ, the solution of Eq. (4) gives us the optimal filter gain, L 

from 1−Σ= o

T RCL . C, Qo, and Ro are the output matrix, the 

disturbance covariance matrix and the sensor noise covariance 

matrix, respectively.  

 

3.2 Selecting the proper weights through ES 
 

LQ control does not have any clear rules for selecting the 

proper weights of the optimal control cost function. The 

designer must depend on the experiential trial and error[6] and 

so we replace the designer’s troublesome task with ES which 

is a simple algorithm but has an excellent search ability[7[, in 

this paper. 

Let us show you the method of applying ES to the 

controller, concretely. LQ optimal control weights are adopted 

as the competitive individuals, under the driving condition 

with the road disturbance of a constant frequency and the 

variables of the fitness function are taken from the system 

responses of the control gains by optional weights, the 

individuals in ES. v = ][ 43211 xxxxx& is used as the 

variables of the fitness function of Eq. (5). 
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iv and 
iv̂ are the i-th. Element 

of v vector and the maximum permitted limit of 
iv , 

respectively. s(.) is the step function and α >> β, 1≈β  

makes the individual that compels v to stay in the permitted 

limit with the small Ua get better marks. For example, smaller 

1̂v will give the individual with better ride quality and we can 

obtain the individual reducing the suspension travel, by 

making 
4v̂ smaller. 

 

x`  =  x + N(0, σσσσ)                                             (6) 
 

Where N(0, σσσσ) represents a Gaussian random variable with 

zero-mean and σσσσ standard deviation and the offspring 

individual, x` is produced from the parent individual, x 

through the mutation like Eq. (6). The offsprings and the 

parents will compete each other in the same generation under 

the same cost function of Eq. (5). In this paper, we use the 

elitism in which the best individual will be alive certainly and 

passed to the next generation.  

 

3.3 Training the neural network 
 

Each proper LQ optimal control weight vector of each 

selected frequency is found by using ES, and each control gain 

vector can be obtained from each proper weight vector by 

solving ARE. Some adopted frequencies and the proper 

control gains of these frequencies are used for the neural 

network training data, as input and output, respectively. In this 

paper, we use a multi-layered neural network of two hidden 

layers with six nodes and eight nodes, respectively. The 

back-propagation algorithm was used to train the neural 

network with one input node and four output nodes. 

 

3.4 Designing the optimal controller 
 

To offer the proper control gain, neural network requires the 

frequency of the road. Fourier transform is the most frequently 

used method in the signal processing and analysis[8]. 

Especially, when we want to know the values of some 

frequencies included in a signal, this works well.  

 

 

Fig. 2 The result of frequency reader using Fourier Transform. 
 

Fig. 2 shows the result of frequency reader using Fourier 

transform. First, we get suspension travel data from the LVDT 

sensor for 1 sec. Using the data, we find the dominant value 

that means the frequency of the road we are driving on. 

 

 
Fig. 3 The block diagram of the whole control system. 

 

The block diagram of Fig. 3 shows the whole control 

system proposed in this paper. 

 

4. SIMULATIONS 
 

Even if we are driving on the road with a constant 

frequency, the actual road frequency added into the car with 

varying speed will be not constant. Therefore, we can 

recognize the fact that the road frequency is related to the car 
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speed, as well as the road condition. This has made us 

consider the road frequency as an important control 

environment. 

The skyhook controller which is effective in controlling the 

car body resonance will be compared with the proposed 

controller through simulations. We will show the superiority 

of the proposed controller by analyzing the responses of the 

ride quality(
z

z&& ) and the suspension travel(
us zz − ) under the 

various driving conditions 

 

Table.1. Simulation Parameters 

Car body mass Ms 290 kg 
Wheel mass Mu 59 kg 

Suspension Spring 

Constant 
Ks 16,812 N/m 

Suspension Damper 

Constant 
Cs 1,000 N/(m/sec) 

Tire Spring Constant Kt 190,000 N/m 

 

 

 
Fig. 4 The system responses of low freq.(0.4~3 Hz) road input 

(Upper : Ride quality, Lower : Suspension Travel). 
 

 
Fig. 5 The system responses of mid. freq.(3~6 Hz) road input 

(Upper : Ride quality, Lower : Suspension Travel). 
 

Fig. 4 and Fig. 5 show the system responses of 

0.0245m-magnitude low frequency region(0.4~3Hz) and 

medium frequency region(3~6 Hz) road input, respectively. In  

figures, the solid lines and the dotted lines represent the 

responses of the proposed controller and the skyhook 

controller, respectively. From the responses in these frequency 

regions, the ride quality of the proposed controller is superior 

to the skyhook’s and the responses of the suspension travel are 

similar, without any restriction in the suspension travel critical 

value, ±0.055m[1]. As the frequency increases into the high 

region, the magnitude of the suspension travel grows and will 

hit the critical value, ±0.055m. This can result in a big loss 

in the components of the car, so we have found the proper 

gains which make the suspension travel reduced at high 

frequencies.  

 

 
Fig. 6 The system responses of high freq.(6~11 Hz) road input 

(Upper : Ride quality, Lower : Suspension Travel). 
 

In Fig. 6, we can see the suspension travel did not hit the 

critical value, ±0.055m but the ride quality was damaged, 

because of the trade-off between the ride quality and 

suspension travel. 
 

 
(a) 

 
(b) 

Fig. 7 (a) The road input with various frequencies and 

magnitudes (b) The system responses of (a) input  

(Upper : Ride quality, Lower : Suspension Travel). 

 
Fig. 7 shows the responses of the road inputs similar to an 

actual road condition where both the frequency and the road 

magnitude are varying. When the suspension travel responses 

of both controllers are similar in ±0.055m, ride quality of the 
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proposed controller is better than the skyhook controller’s. 

We may meet the situation of driving through obstacles, 

like speed bumps and holes. At these occasions, passing the 

critical value is expected, so we utilize the double skyhook 

control gains which can reduce the suspension travel 

effectively[9], on hitting the critical value. In Fig. 8, though 

the ride quality suffered damaged, the other increase in the 

suspension travel was obstructed and the components would 

be protected. 

 

 
(a) 

 
(b) 

Fig. 8 (a) The 0.11m-height speed bump road input 

(b)The system responses of (a) input 

(Upper : Ride quality, Lower : Suspension Travel). 
 
 

4. CONCLUSIONS 

 
In this paper, we have found the proper gains through ES by 

considering the trade-off between ride quality and suspension 

travel relevantly and judging the relative importance under a 

given driving condition based on the road frequency. We have 

trained the neural network with the found control gains and 

made sure of the interpolation ability of the neural network 

which can produce proper outputs from some non-trained 

input data. Proper control gains from the on-line neural 

network can make the controller fitted well to any road 

conditions. When we meet unexpected situations such as 

speed bumps and holes, we could see the ability to deal with 

this crisis by using the double skyhook control.  
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